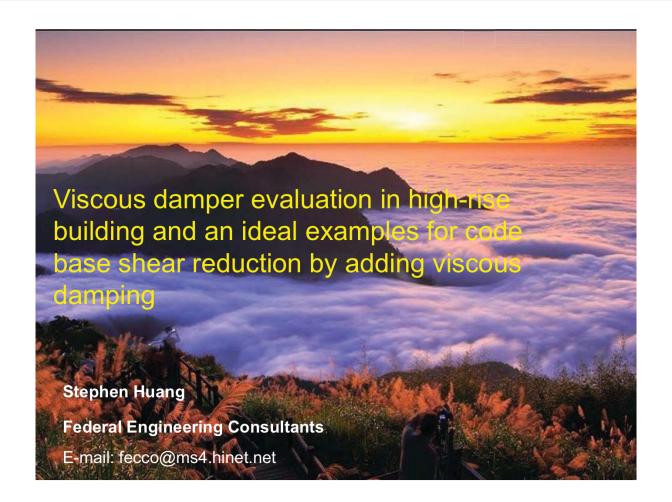
Viscous Damper Evaluation in High-Rise Building and Ideal Examples for Code Base Shear Reduction by Additional Viscous Damping

Mr. Stephen Li-Tsung Huang Vice President of Federal Engineering Consultant and


Vice President of Federal Engineering Consultant and Structural Engineer (S.E.) of R.O.C

Experiences

- Winner of Excellence Young Engineer from R.O.C. Structural Engineering Society in 2006
- Ove Arup &Partner (CA) / Jae-Lien Engineering Consultant (TWN)
- Federal Engineering Consultant, Associates.

Stephen Huang is skilled at structural analysis, tall buildings, seismic resistance and energy absorb device design. His projects cover both public and private buildings, including multi-use projects, office and commercial buildings, hotels, institutional, educational and health facilities, arenas, parking structures, and residential buildings. He is also Involved in different construction materials of RC, SRC, Steel, Wood and Precast buildings, participated developing in passive energy dissipation system, deep excavation and top-down construction.

Stephen are currently a registered Structural Engineering of both Taipei & Taiwan Structure Engineering Association (TESA) and the member of the Chinese Taiwan Society for Earthquake Engineering (CTSEE) and the Chinese Society of Structural Engineering (CSSE). He also performs as a peer reviewer committee of Taipei Structure Engineering Association (TESA).

Contain

- ■□ Familiar Passive Control Device in Taiwan
- ■□ Effective damping ratio of linear dampers
- ■□ Application of dampers in tall buildings
- ■□ Concerns of Damper replace Reinforcement
- ■□ Design Example For Building with FVD Damper

Type of passive control device

Displacement- dependent

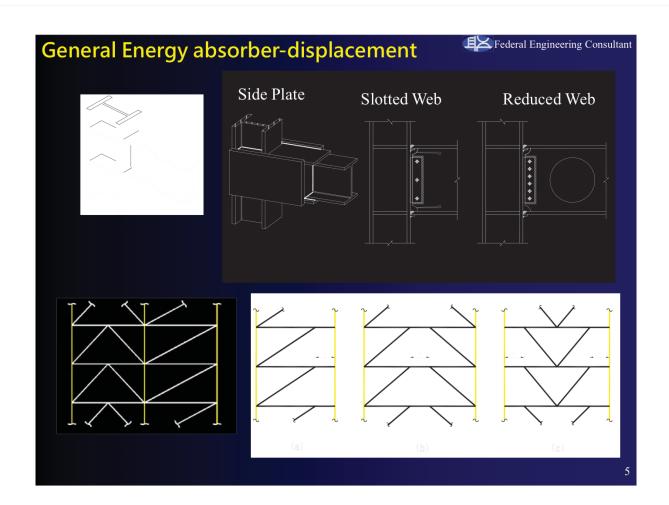
(1) Friction

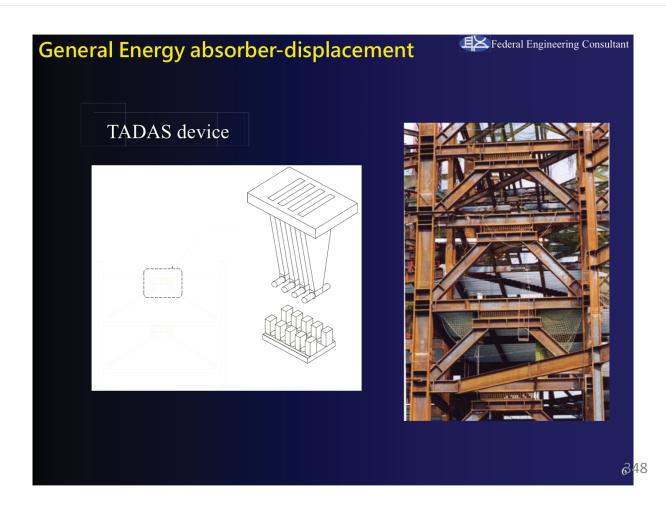
(2) Yielding

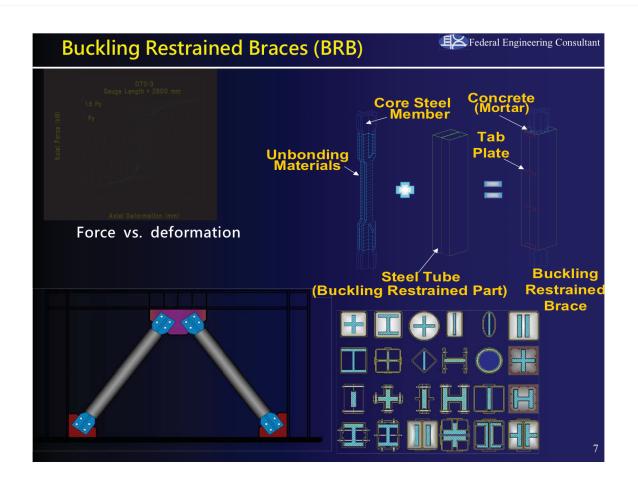
Velocity- dependent

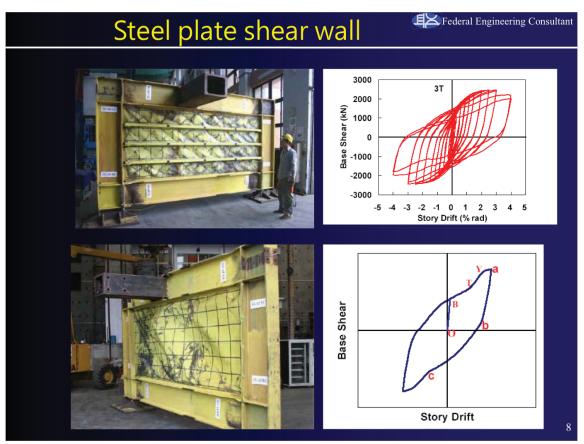
(3) Viscoelastic

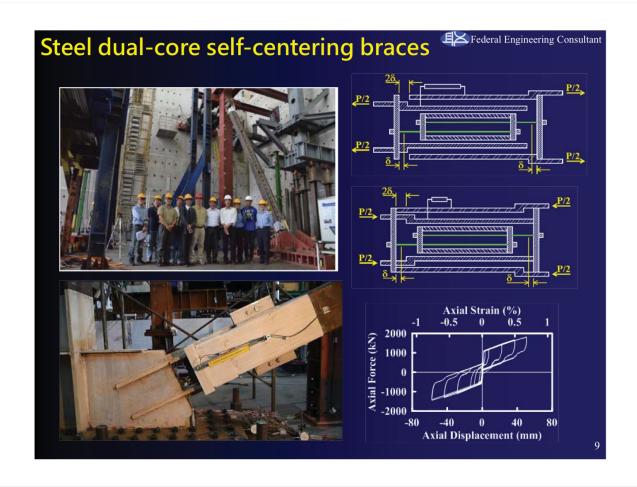
(4) Viscous

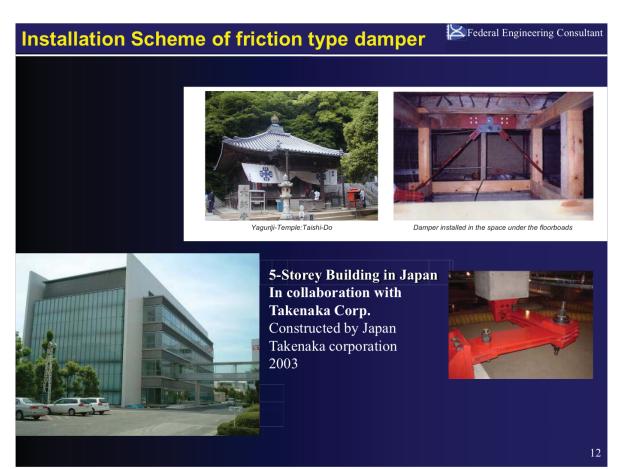


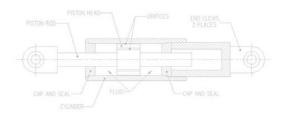

3


Displacement dependent vs. velocity dependent


ısultant


	it dependent vs. ver		
	Displacement dependent (BRB device)	Velocity dependent Viscous damper	
Energy absorber	Metal yielding Displacement 金屬降伏消能元件 摩擦消能元件	Viscous material Displacement Displacement Displacement 成慈黏滞贫重	
Function occasion	Energy dissipation after metal yielding at moderate/severe earthquake	Works during service/moderate earthquake or severe severe Typhoon	
Performance	Increase structural capacity, Reduce story drift by add stiffness and capacity	Reduce drift and acceleration, improve service-ability	
Design method	Incorporated into entire frame analysis model for an integrity.	Maximum Reaction phases are different, Usually be treated as supplemental device.	
Performance under (DBE)Design Basis Earthquake	Structure with adequate Ductility	Frame of damper might be damaged, efficiency decade significantly	
Goal	Repairable under DBE earthquakes, and collapse prevention under MCE quakes	Improve performance under Wind and Seismic loads	

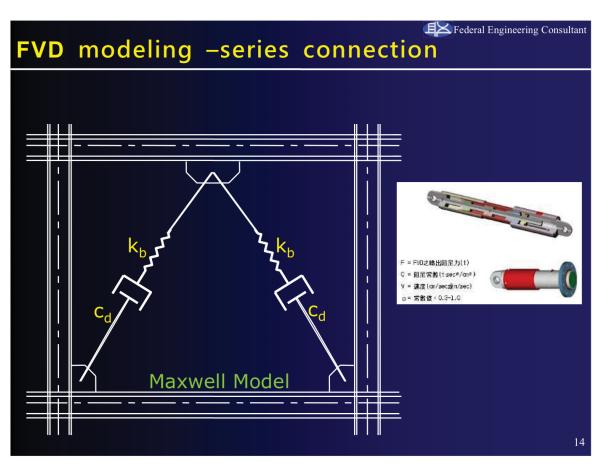




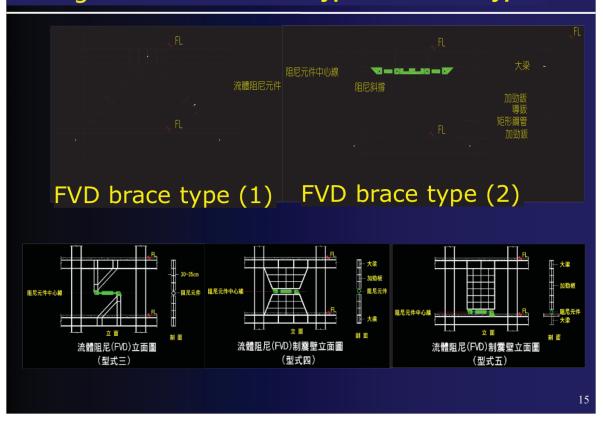
Fluid viscous damper

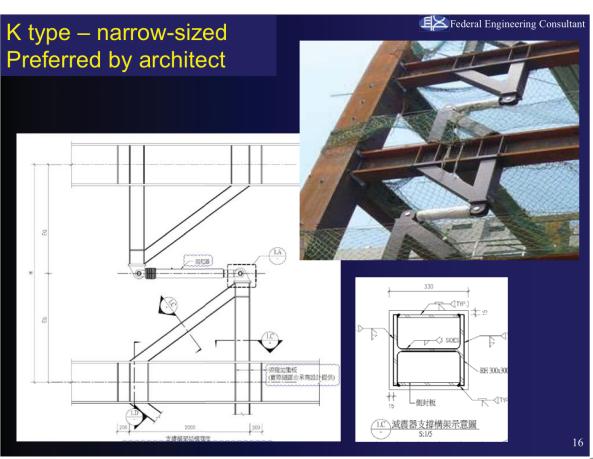
F = Force of FVD(t)

 $C = Damping Constant(t \cdot sec^{\alpha}/cm^{\alpha})$


V = velocity(cm/sec或m/sec)

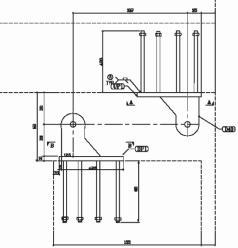
 α = Exponential · 0.3~1.0



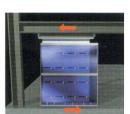

13

Arrangement of FVD - Wall type and Brace type

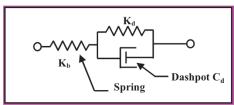
Consultant



Inefficient layout – parallel to RC wall


17

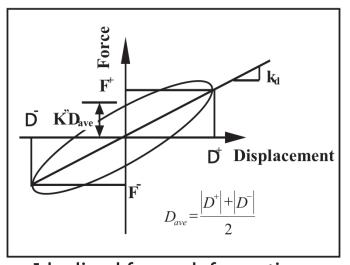
Viscous Damper-wall type



ultant Bilinear vs. Exponential Fluid damper More sensitive by ball joint 實級:設計值 虛線:±10%範圍 測試頻率 1 Hz 400 200 阻 尼 400 力 300 -200 -400 60 70 速度(cm/s) 位移(mm) 速度-阻尼力關係 位移-阻尼力關係 KYD 油壓速度型阻尼器、是一個外部簡潔的可靠機 造,當實動發生時,外力會推動活塞桿,並壓縮油室 裡的油。此時因為被壓縮的油會通過洩壓閩並產生 緩衝力。緩衝力會等比例的對應速度大小。當速度增 大時緩衝力也會增加。利用油通過卸壓關時,動能轉 **罗成熟能藉以吸收並消散地震之能量**。 19

Visco Elastic Material

Kevin model

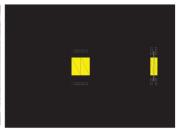

K_d: Device Stiffness

C_d: Damping coefficient

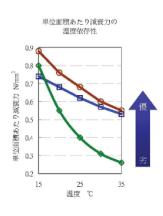
D: Relative displacement

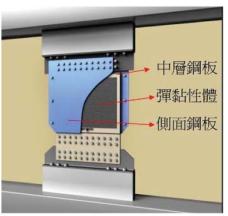
D: Relative velocity between ends of device

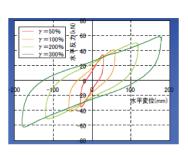
$$F = K_d D + C_d \dot{D}$$

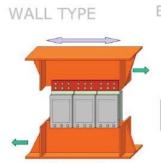

Idealized force-deformation relationship for Visco-Elastic material 555

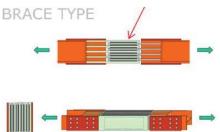
Visco-Elastic wall dampers

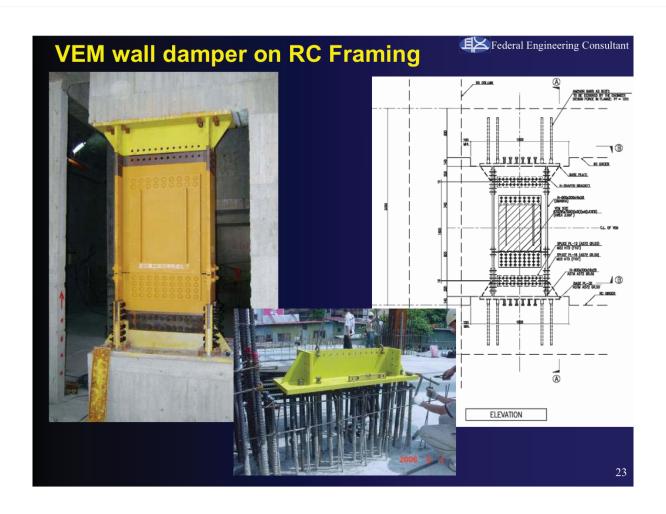


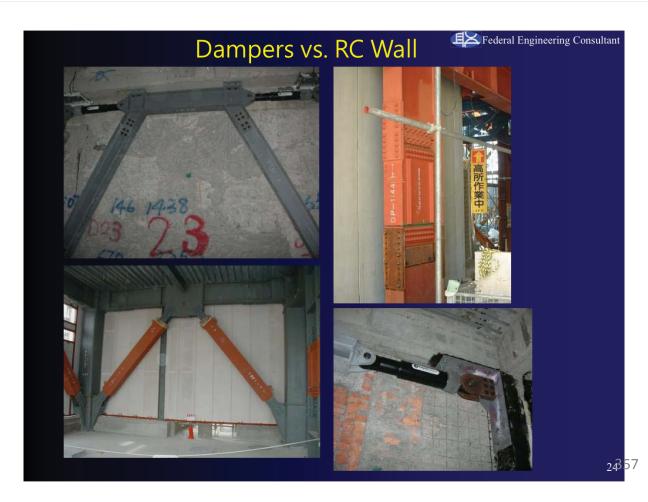



21


Visco-Elastic or High Damping Rubber wall Gering Consultant







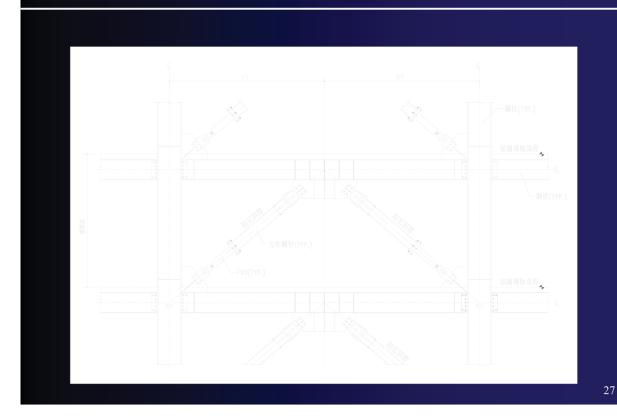
Contain

- Familiar Passive Control Device in Taiwan
- Effective damping ratio of linear dampers
- Application of dampers in tall buildings
- Concerns of Damper replace Reinforcement
- Design Example For Building with FVD Damper

25

Federal Engineering Consultant

How to evaluate effective damping ratio for linear damper


- Location: Taipei Neihu
- Stories: 9 floors with 3 level basements
- **Structural system: Steel MRF**
- Floor area: 81,100m2
- **Building type:**

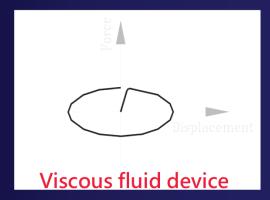
Office at superstructure

Parking lot at basement

FVD installed with braces frame

E Federal Engineering Consultant

Schedule of FVDs with 10% damping ratio

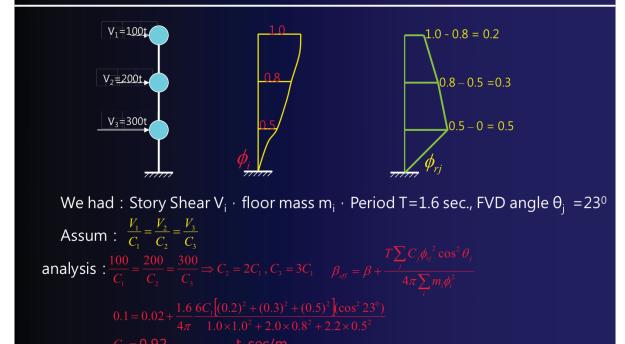

Number	Damping force (kN)	Damping constant C(kN·s/m)	Stroke (mm)
1	300	3300	±50
2	450	4200	±50
3	600	5600	±50
4	1000	6900	±75
5	1000	8100	±75
6	1350	9500	±75
7	1350	11000	±75

Effective Damping ratio contributed by FVD

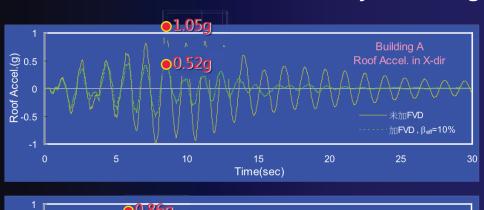
Using floor's displacement to estimate the effect damping ratio as follows:

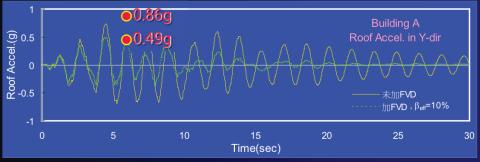
$$oldsymbol{eta}_{eff} = oldsymbol{eta}_0 + rac{\sum_j W_j}{4\pi W_b}$$

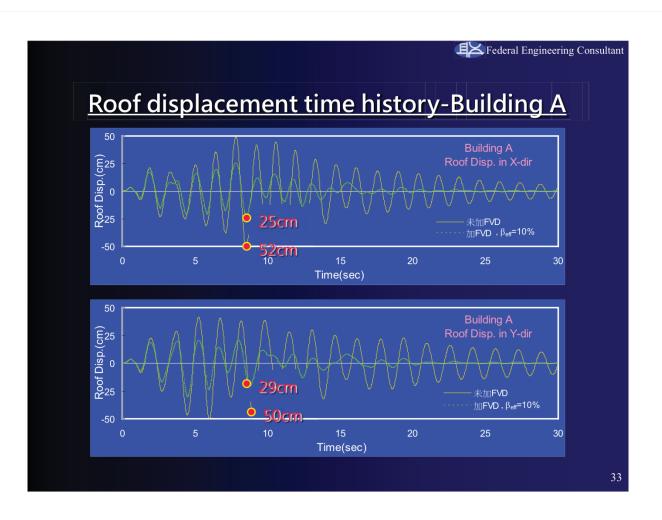
- β_0 : Damping in structural frame, use 2% for steel frame
- W_i : Work done by device j in one complete cycle corresponding to floor disp. δ_i
- W_k : Maximum strain energy in the frame = $1/2\sum_i F_i \delta_i$
- F_i : Inertia force in level i
- \mathcal{S}_i : floor displace in level i

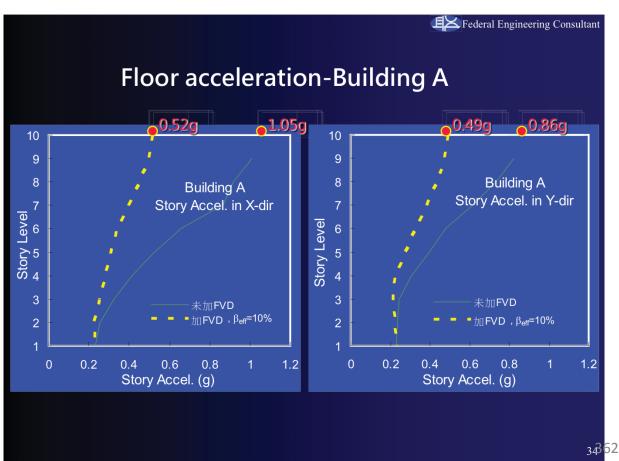

Federal Engineering Consultant

Estimation of Damping ratio contributed by linear FVD

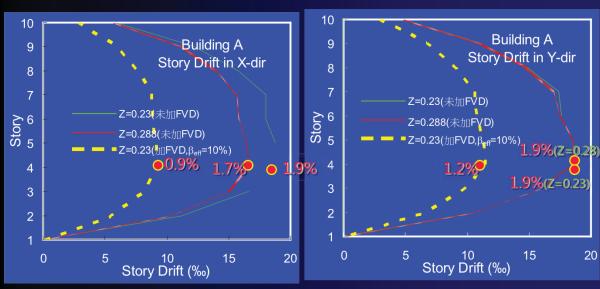

$$\beta_{\text{eff}} = \beta_0 + \Delta \beta = \beta_0 + \frac{\sum_j W_j}{4\pi W_k} = \beta_0 + \frac{T \sum_j C_j \phi_{ij}^2 \cos^2 \theta_j}{4\pi \sum_i m_i \phi_i^2}$$


- =Total effective damping ratio of structural frame with dampers eta_{eff}
- =Inherent damping ratio of frame say 2%~5% β_{o}
- =Effective damping ratio conducted by FVD damper
- $\Delta \beta$ W_i =Work done by device j in one complete
- W_k =Maximum strain energy in the frame = $\frac{1}{2} \sum_{i} F_{i} \delta_{i}$
- F_{i} δ_{i} C_{j} ϕ_{rj} θ_{j} m_{i} =Inertia force in level i =Floor displace in level i,
- =Fundamental Period of structure including all dampers stiffness
- =Damping constant for device j
- =The first mode relative displacement between the end of device j
- =Angle of inclination of device j to the horizontal
- =mass of floor level i
- =The first mode displace of floor level i


Assumption of damping constant of each floor



Roof acceleration of Time History -Building A



Story drift ratio -Building A

Note: If structural size enhanced from I = 1.0 to I = 1.25, seismic load increased due to short period, structural performance might not improve accordingly.

35

Federal Engineering Consultant

Performance Comparison of Damping Ratio

Damping	Base-shear	Roof acceleration	Story drift	Cost of damper (US\$)
2 %	Basis value	Basis value	Basis value	Basis value
10 %	51%	51%	51%	1.96 million
15 %	62%	61%	62%	2.60 million
20 %	66%	63%	66%	2.68 million
30 %	72%	67%	72%	3.72 million

Note: 1. Value in table shows the deduction percentage. It is demonstrated as in X direction of tower A

2. If important factor increase to I=1.25 steel cost might increase US \$40 million.

Contain

- ■□ Familiar Passive Control Device in Taiwan
- ■□ Effective damping ratio of linear dampers
- ■□ Application of dampers in tall buildings
- ■□ Concerns of Damper replace Reinforcement
- ■□ Design Example For Building with FVD Damper

Project In Taichung 29F/B5

Location : Taichung

Stories : 29 Floors/B5

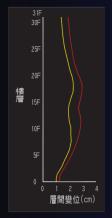
Structural system : Steel

Floors area : 30,700m2

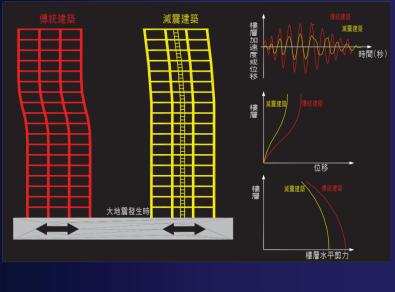
Building Type :

Gymnasium at level 2~3 residential at level 4~29 Parking lot at basement

EX Federal Engineering Consultant


20

Typical Framing Layout of BRB and VEM



What performance be improved ?

- Quantity ?
- Floor ?
- Perimeter or interior
- RC wall behind
- Customized or regular product

How to get velocity damper efficient

Federal Engineering Consultant

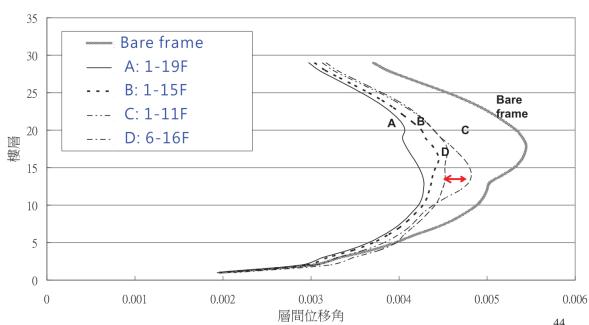
Federal Engineering Consultant

Schedule of VEMs for installed floors

Scheme	Arrangement per Floor	Floor	Total set
Basic	Bare Frame		
А	4 sets in Y-dir	1~19F	76 sets
В	4 sets in Y-dir	1~15F	60 sets
С	4 sets in Y-dir	1~11F	44 sets
D	4 sets in Y-dir	6~16F	44 sets

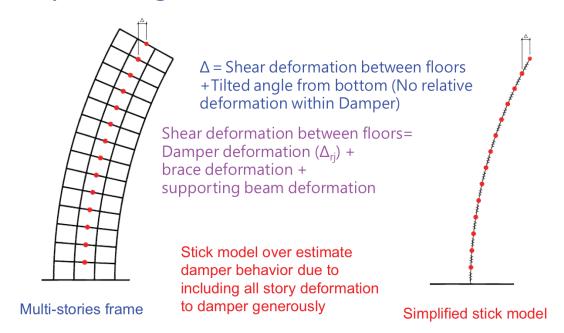
Performance of VEM for installed floors

	Bare frame	scheme A	scheme B	scheme C	scheme D
Floor Distribution	None	Lower 2/3	Lower 1/2	Lower 1/3	Middle 1/3
Deduction in base-shear	basic	20%	18%	15%	15%
Deduction in story drift	basic	24%	21%	15%	19%
Deduction in Rf acceleration	basic	45%	37%	24%	31%
Performance improved		0	0	Δ	Δ
Floor installed		1~19	1~15	1~11	6~16
Total sets		76	60	44	44

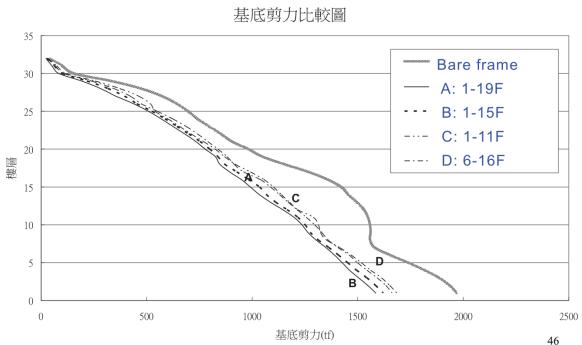

Symbol: O great Δ Fair X poor

43

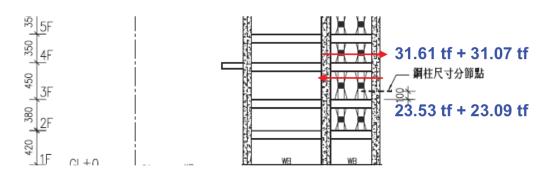
Story drift comparison for installed floors


層間位移角比較圖

44367


Effective deformation (Δ_{rj}) of damper for higher floors

45


Story shear comparison for installed floors

Capacity check of moment from damper's shear

Shear in damper will cause additional moment to supporting beams, capacity of beam shall be checked under code base shear

47

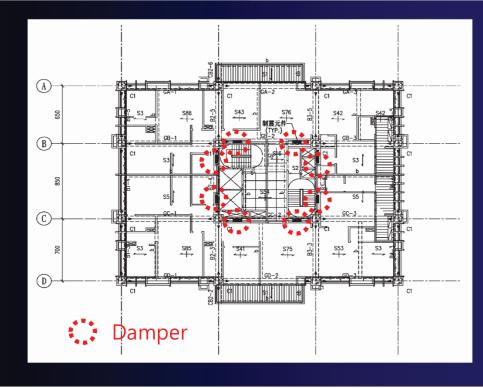
Project in Taipei 22F/B3

Federal Engineering Consultant

Location : Taipei

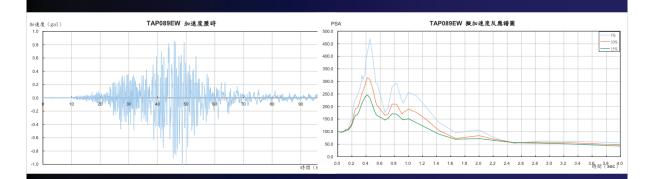
Stories : 22 floors/B3

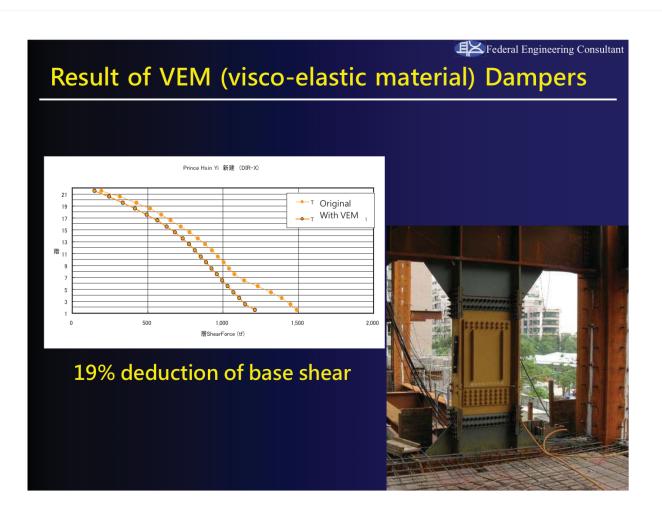
Structural system : Steel

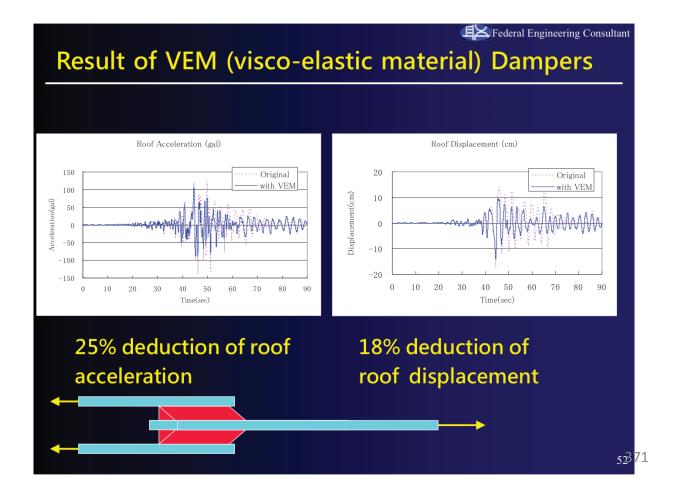

Floors area : 35,800m2

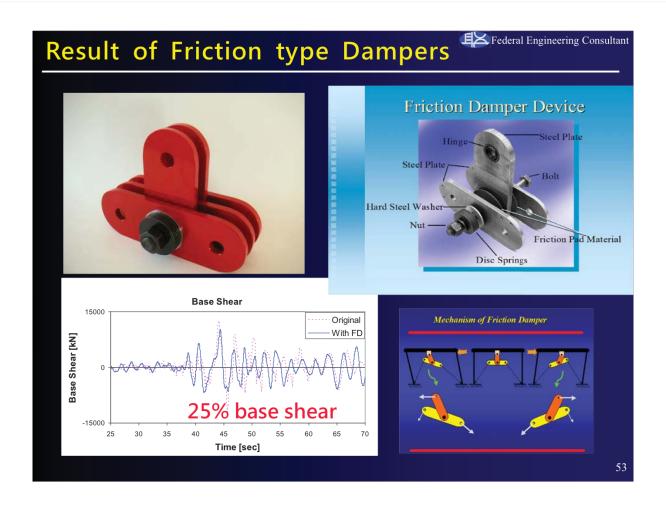
Building type :

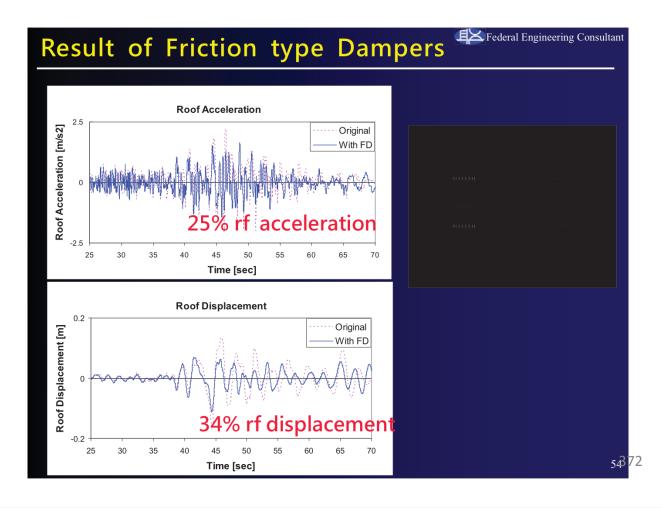
Gymnasium level 2 residential level 3~22 parking lot at basement

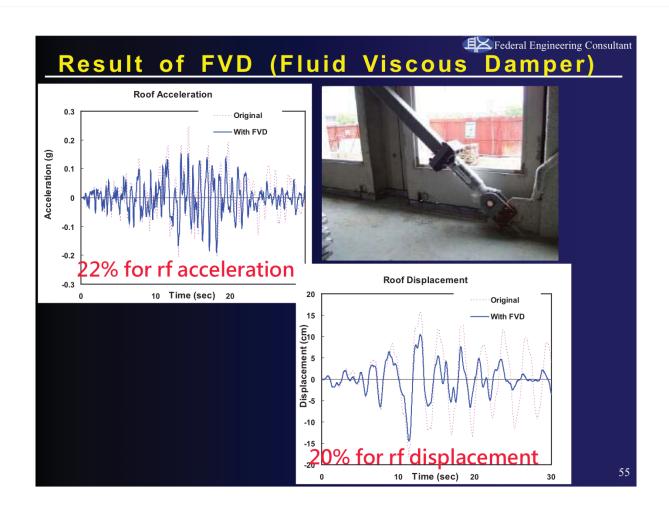

Typical Floor layout with 8-dampers in service core




Federal Engineering Consultant

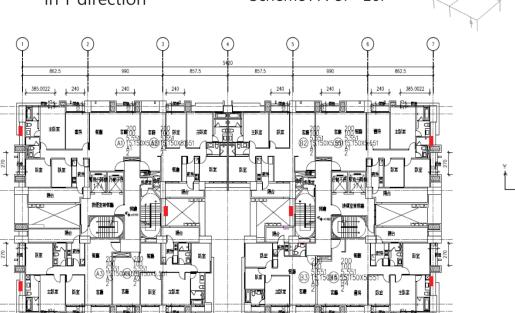

Performance Target of Building with different dampers


- 20% deduction of base shear
- 20% deduction of roof drift and acceleration
- 4 sets in each directions of each installed floors
- Provide required sets to meet target above



P	Performance comparison for types of dampers					
	Doufousson	Deduction of Building with types of Dampers				
	Performance items	Fluid viscous (FVD)	Friction (FD)	Visco-elastic (VEM)		
1	Base shear	about 26%	about 25%	約19%		
2	Rf acceleration	about 22%	about 25%	約25%		
3	Rf displacement	about 20%	about 34%	約18%		
4	Installed floor and the quantity be used	2F-14F 4 sets in each direction	2F-16F 4sets in each direction	2F-11F 4set each dir. 12F-18F 2sets each dir.		
5	Total quantity	104 sets	120 sets	108 sets		
6	Damper cost	104.5%	100%	105.2%		

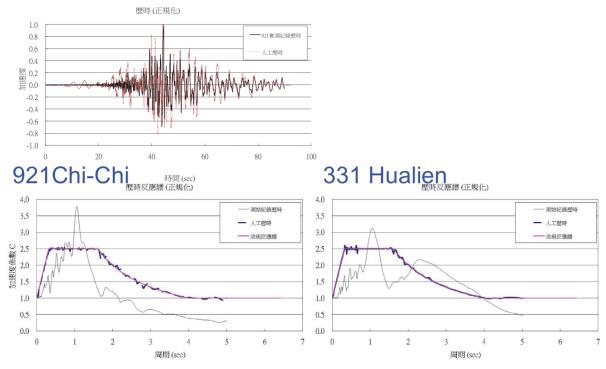
Federal Engineering Consultant


Contain

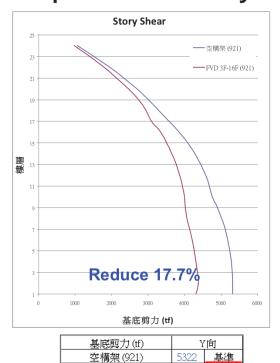
- ■□ Familiar Passive Control Device in Taiwan
- ■□ Effective damping ratio of linear dampers
- ■□ Application of dampers in tall buildings
- ■□ Concerns of Damper replace Reinforcement
- ■□ Design Example For Building with FVD Damper

57

Dampers arrangement In plan


 6 Dampers in Y direction Stories with damper Scheme A: 3F~16F

921 and 331 earthquake records

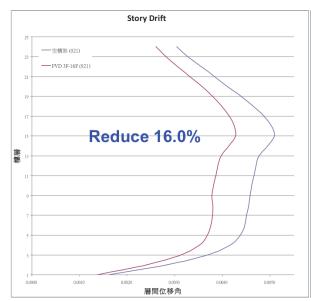


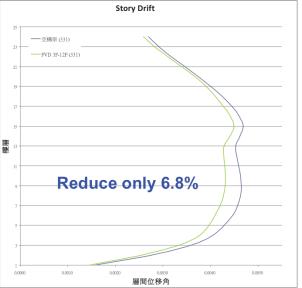
Compatible spectrum with code requirement

Comparison of story shear

			Sto	ry Shear			
2	25				_	空構架 (331)
2	23					FVD 3F-12F	(331)
2	21		$\overline{}$				
1	19						
1	17				\		
1	5				 		
K I	13				$-\!$		
	1						
	9						
	7						
	5						
	3						
		R	educ	ce on	ily 6.	8%	
	0	1000	2000	3000	4000	5000	6000
			差	底剪力(tf)		

基底剪力(tf)	Y向		
空構架(311)	5730	基準	
FVD構架3F-16F(331)	5340	-6.8%	


921Chi-Chi compatible quake


FVD構架3F-16F(921)

331 Hua-lien compatible quake⁷⁵

Comparison of story drift

層間位移	Y向	
空構架(921)	0.0051	基準
FVD構架 3F-16F (921)	0.0043	-16.0%

空構架 (331) 0.00 FVD構架 3F-16F (331) 0.00

層間位移

921Chi-Chi compatible quake

331 Hua-lien compatible quake

Federal Engineering Consultant

The concerns of FVD Damper replace Steel

1. Uncertainty of Seismic Record's characters:

Two records, even from the same location, compatible to Code-basis design spectrum, the performance were still quite different!

2. Uncertainty of dampers performance In DBE or MCE severe earthquake :

Lots of plastic hinges occurs on Frame, Damper should be remained stability in all direction during large deformation $^{\circ}$

FEMA: The components and the connections transferring forces between the energy dissipation devices shall be designed to remain linearly elastic for the 130% velocity correspond to MCE earthquake.

The concerns of FVD Damper replace Reinforcement

1. Uncertainty of Seismic Record's characters:

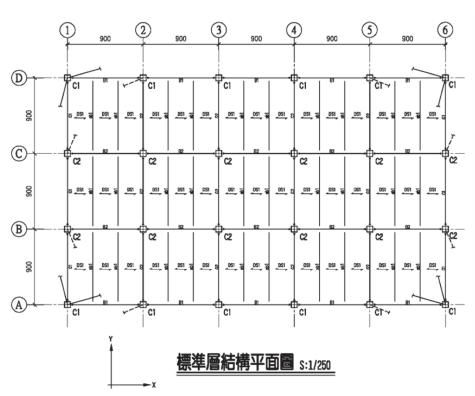
Two records, even from the same location, compatible to Code-basis design spectrum, the performance were still quite different!

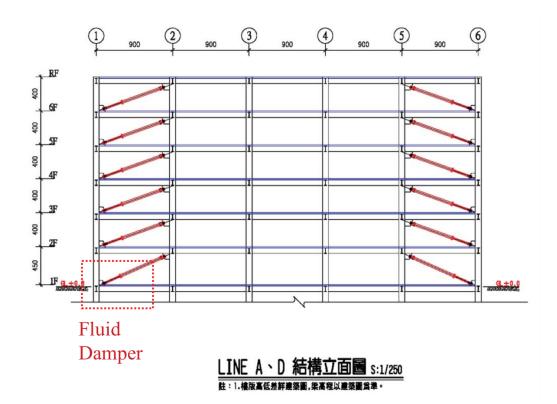
- 2. Uncertainty of dampers function In DBE or MCE severe earthquake: Lots of plastic hinges might occur on Frame, Damper should be remained stability in all direction during large deformation.
- 3. Uncertainty of Damping ratio evaluation:

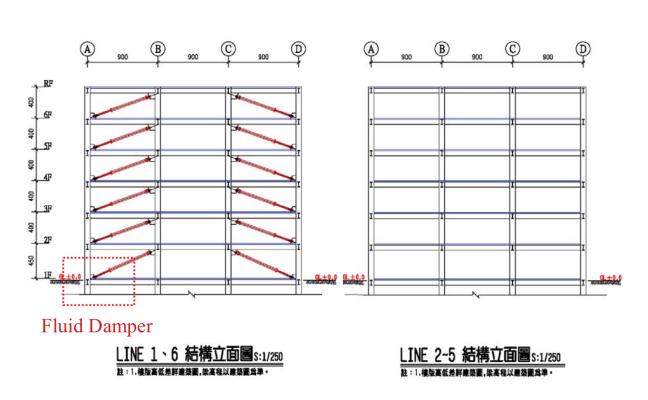
 Currently we are using Energy Method to figure out the equivalent Damping ratio by fundamental translation modes.

 More research were expected for non-linear dynamic time history.

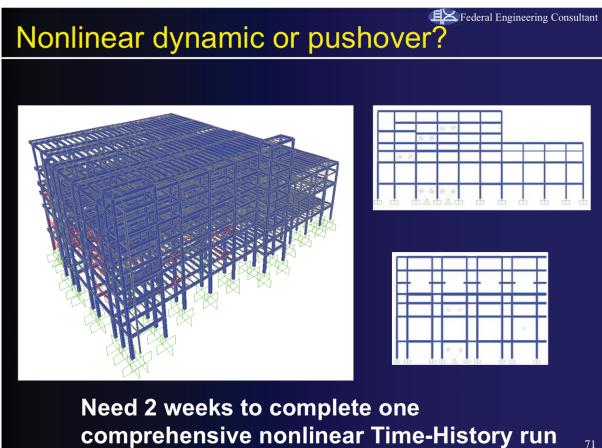
Most of viscous damper purpose: better serviceability




- ■□ Familiar Passive Control Device in Taiwan
- ■□ Effective damping ratio of linear dampers
- ■□ Application of dampers in tall buildings
- ■□ Concerns of Damper replace Reinforcement
- ■□ Design Example For Building with FVD Damper

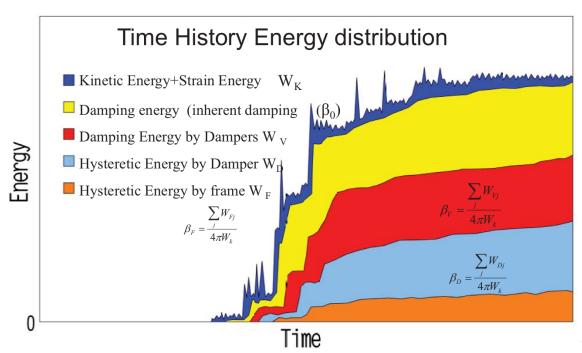

Design Example For Building with FVD Damper

- Structural outline
 - Location: High seismic zone with near fault effect
 - Scale: 6 floors above grade with one level basement
 - Type : Office
 - Material: Steel structure
 - Seismic System : Moment Resistant Frame (SMRF) + FVD damper
 - Story Height 4.0m
 Total 24.0m

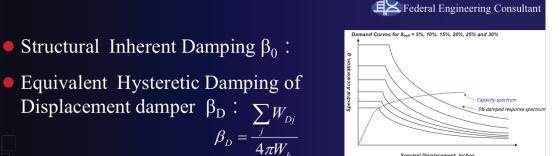

Design Spectral Acceleration Parameters

- Located on Chia-yi city, Spectral parameters are as follows:
- $-S_S^D = 0.8 S_1^D = 0.45 S_S^M = 1.0 S_1^M = 0.55$ [Table 2-1]
- Near Active fault : Mei-shan Fault
- Near Fault parameter $N_A=1.37$, $N_V=1.44$ $N_{A-M}=1.30$, $N_{V-M}=1.48$ [Table 2-5-4]
- Site soil class is Type II, Site coefficient are as following
- DBE earthquake level (475 years returned Period) $F_a = 1.0$, $F_v = 1.2$
- MCE earthquake level (2500 years returned Period) $F_a = 1.0$, $F_v = 1.1$
- $-S_{DS} = N_A F_a S_S^D = 1.096$ [Section 2.5]
- $S_{D1} = N_V F_v S_1^D = 0.7776$
- $-T_{D}^{0}=0.709 \text{ sec}$ [Section2.6]
- $-S_{MS} = N_{A-M} F_a S_S^M = 1.30$ [Section 2.5]
- $-S_{M1} = N_{V-M} F_v S_1^M = 0.8954$
- $-T_{M}^{0}=0.689 \text{ sec}$ [Section 2.6]

Federal Engineering Consultant


Analysis Method of structure model include dampers

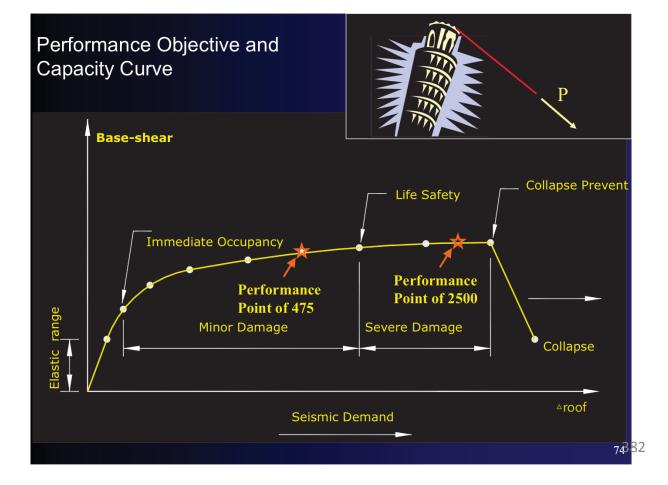
- 1 · Linear Procedure
 - Linear Static Procedure (LSP)
 - Linear Dynamic Procedure (LDP)
 - Linear Procedure are only permitted if it can be demonstrated the frame system exclusive of the energy dissipation device REMAIN essentially linearly ELASTIC for the level of earthquake demand of interest after the effect damping are considered
 - The effective damping ratio shall not exceed 30%
- 2 · Nonlinear Static Procedure (NSP)
- 3 · Nonlinear Dynamic Procedure (NDP)



Equivalent Damping Ratio

Energy Distribution of DBE eqrthquake(475 years returned period) Damping ratio varies with Earthquake Hazard level

Federal Engineering Consultant


Equivalent Viscous Damping of Velocity Damper β_{V} : $\beta_{V} = \frac{\sum_{j} W_{Vj}}{4\pi W_{k}}$

Equivalent Hysteretic Damping of Frame β_F : $\beta_F = \frac{\sum_j W_{Fj}}{4\pi W_k}$

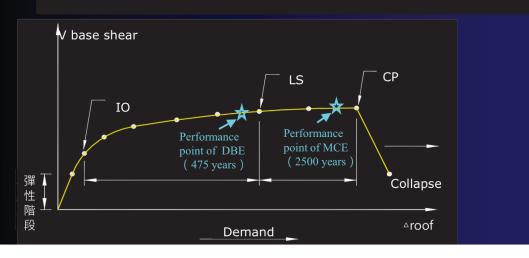
Total Damping of structural $\beta_{eff} = \beta_0 + \overline{\beta_D + \beta_V + \beta_F}$

Where $W_{Dj} : W_{Vj} : W_{Fj}$ are the work done by the *j* devices of Displacement damper, Velocity damper and Frame element in one complete cycle corresponding to specified floor displacement.

 W_K is the maximum strain energy in frame $W_K = \frac{1}{2} \sum_i F_i u_i$

Evaluated of Effect damping ratio at PT

Federal Engineering Consultant


$$\beta_{V} = \frac{\sum_{j} W_{Vj}}{4\pi W_{L}} = \xi_{1} \sum_{i} W_{Vj} = \left(\frac{2\pi}{T_{S}}\right)^{\alpha} \sum_{i} \lambda C_{j} \left|\Delta_{vj} \cos \theta_{j}\right|^{1+\alpha} \qquad W_{K} = \frac{1}{2} \sum_{i} F_{i} u_{i}$$

 W_{Vj} is the work done by the j devices of velocity damper in one complete cycle corresponding to floor displacement subject to $\lambda = 2^{2+\alpha} \frac{\Gamma^2(1+\alpha/2)}{\Gamma(2+\alpha)}$ complete cycle corresponding to floor displacement subject to performance point of concerned quake event.

W_K is the maximum strain energy

Parameter λ See Table C9-4 of FEMA 274

T_s is the secant period corresponds to Performance point

Federal Engineering Consultant

 Assuming the total viscous damping ratio $(\beta_0 + \beta_v)$ are more than 15%. The Seismic base shear could be reduced by damping modification factor B. Based on the reduced shear, column could be designed as shown in table:

Story	label	Member size (mm)	Material
1F~2F	C1	Box 700×700×22×22	
3F~6F	C1	Box 600×600×25×25	fy=2500
1F~2F	C2	Box 650×650×22×22	fy=2500 kg/cm ²
3F~RF,	,C2	Box 600×600×20×20	

$$V = \frac{S_{aD}}{R} * IW \qquad S_{aD} = \frac{S_{DS}}{B_S} or \frac{S_{D1}}{B_1 T}$$

Damping modification factor B:

Damping Coefficients Bs and B1 as a Function of Effective Damping Ratio B

7
]
]
Taiwa
code
]
]

Taiwan Seismic code

Table 15.6-1 Damping Coefficient, B_{V^2I} , B_{ID} , B_{R} , B_{IM} , B_{mD} , or B_{mM}

	2 mg (2 mg,						
	Effective Damping, β (percentage of critical)	B_{V+I} , B_{ID} , B_R , B_{IM} , B_{mD} or B_{mM} (where period of the structure $\leq T_{\theta}$)					
	≤2	0.8					
*****	5	1.Ω					
	10	1.2					
	20	1.5					
*******	30	1.8					
	40	2.1					
	50	2.4					
	60	2.7					
	70	3.0					
	80	3.3					
	90	3.6					
	≤ 100	4.0					

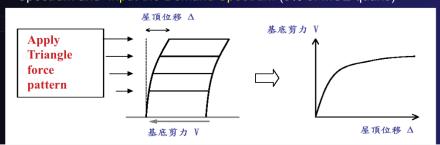
Note: The damping coefficient should be based on linear interpolation for effective damping value other than those given.

FEMA 450 and ASCE 41-06

 $B_1 = 4/(5.6-\ln(100\beta))$

77

Pushover procedure


-- for Nonlinear Fluid Viscous Damper

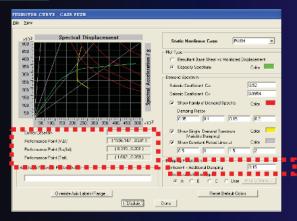
(Step 1) Determine target viscous damping ratio, figure out member size and damper quantity and layout in plane and elevation, damper's parameter

- Target on total viscous β_{eff} =15%, calculate reduced code base shear with 15% damping by factor B, the reduced base shear, according to Taiwan code, should not less than 80% of normal code base shear of inherent 5% damping ratio.
- Arrange 4 sets of FVD in each direction each floor, $F=CV^{\alpha}$, $\alpha=0.3$

(Step 2)Pushover analysis

- Apply sustained load 100%Dead load+50%live load as the initial load
- Apply vertically Triangle (or mode) force pattern to be the force incremental pattern in pushover analysis
- Transfer into ADRS(Acceleration-Displacement Response Spectra) and Capacity Spectrum and Input the Demand Spectrum (5% of MCE quake)

384


Pushover procedure

-- for Nonlinear Fluid Viscous Damper

(step 3) Assuming the viscous damping in MCE stage is equal to what we expected in step 1, where includes:

- Structural inherent damping β₀=5%
- Plus additional damping from viscous damper β_v=10%
- In put Damping ratio = β_0 + β_v = 15% in the "Inherent damping ratio + additional damping ratio" dialog box

(Step 4) Perform the Pushover analysis to get the Performance point

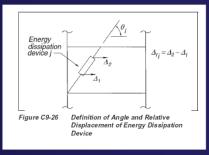
 $\hat{\mathbb{I}}$

- Roof displacement D=0.261m
- Base shear V=1356 t
- Total damping of entire structural $β_{eff} = β + β_v + β_h = 28.9\%$
- Structural foundamental period at performance point is Teff = 1.602 sec

79

Pushover procedure

Federal Engineering Consultant


-- for Nonlinear Fluid Viscous Damper

(Step 5) export for all the story drift in accordance with the Performance point

(Step 6) determine the damping constant (C, F=CV^α) of each device in vertical arrangement

- To simplfy in this case, C group into 3 types:
 C1~2F: C3~4F: C5~6F=9:8:5

(Step 7) Calculate the effective damping ratio β_v

– Through the roof displacement, story drift, to figure out the damper's deformation and the viscous work with the given damper's C and α value accordingly.

$$\beta_V = \frac{\sum_j W_{Vj}}{4\pi W_k} = \xi_1$$
 W_{Vj} is the work done by the j devices of velocity damper in one complete cycle corresponding to floor displacement subject to performance point of concerned quake event.

$$\sum W_{ij} = \left(\frac{2\pi}{T_s}\right)^{\alpha} \sum \lambda C_j \left| \Delta_{ij} \cos \theta_j \right|^{1+\alpha} \quad W_K = \frac{1}{2} \sum_i F_i u_i \qquad \lambda = 2^{2+\alpha} \frac{\Gamma^2 (1+\alpha/2)}{\Gamma (2+\alpha)}$$

Pushover procedure

-- for Nonlinear Fluid Viscous Damper

(Step 10) Iteration to convergence

Re-analysis pushover step3 by update calculated $\beta_{v,\,1}$ of step9 , Repeat step 3~8 till the calculated damping ratio $\beta_{v,\,i+1}$ of step9 in i+1 cycles is convergence, i.e. abs($\beta_{v,\,i+1}$ - $\beta_{v,\,i}$) < tolerance

(Step 11) Evaluated the capacity of FVDs in correspond to MCE quake event

- All dampers shall be capable of sustaining the force associated with velocity equal to 130% of the maximum calculated velocity for the device in MCE.
- Calculated the velocity demand (V) by damper's relative deformation and the secant fundamental period associated with the performance point of MCE, determine the FVD's force and stroke capacity

(Step12) The components and the connections transferring forces between the energy dissipation devices shall be designed to remain linearly elastic for the 130% velocity correspond to MCE earthquake.

	Damping constant C	Stroke	Nominal capacity F _D
RF	55.5	40	40
6F	55.5	40	40
5F	88.5	60	75
4F	88.5	60	75
3F	99.5	60	75
2F	99.5	60	75

Energy Dissipation vs. Isolation Design of High-Rise Mansion Buildings in Taipei Basin

Experiences

- Vice General Manager, NSG & HML ARCH.&BUILDING Research Institute (2017~ Present)
- Manager, NSG (2003~2017)

Hsien-Kai Liu

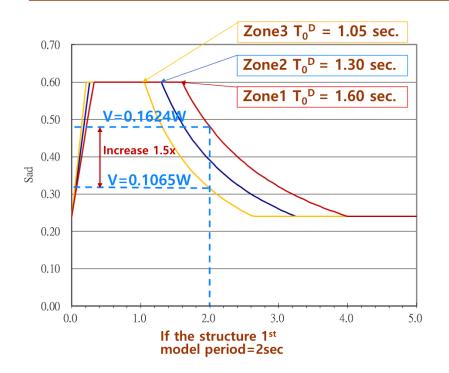
Vice General Manager of New Structure Group & H.M Liao ARCH & Building Research Institute and Structure Engineer (S.E.) of R.O.C

Hsien-Kai Liu joined NSG company in 2003. He has participated in the design of various types of structures, such as high-rise buildings, isolation structures, high-tech plants, structural reinforcement, energy dissipation design etc. He specializes in nonlinear structural analysis and seismic isolation design.

Mr. Liu is now a registered structural engineering of the Taipei Structure Engineering Association (TESA).

NSG was founded in 1976 by Dr. H.M.Liao. The company reputed with the two famous work in Taiwan, one is the first high-rise steel building in Taipei, introduced in 1981. And the other, Taipei Tzu Chi Hospital is the first large-scale earthquake-isolation hospital designed in 2000.

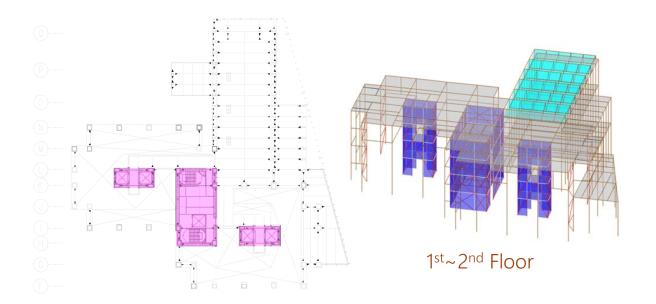
Energy Dissipation vs. Isolation Design of High-Rise Buildings in Taipei Basin


NEW STRUCTURE GROUP
Hsien-Kai Liu
Vice President

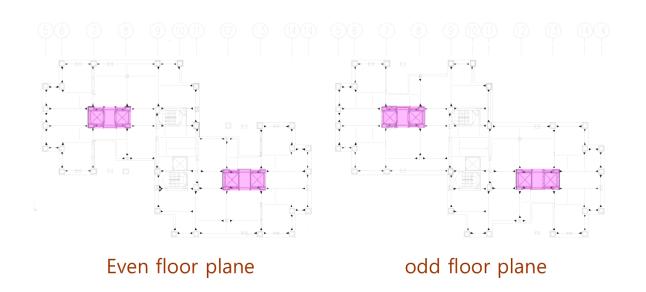
Introduction- Taipei Basin

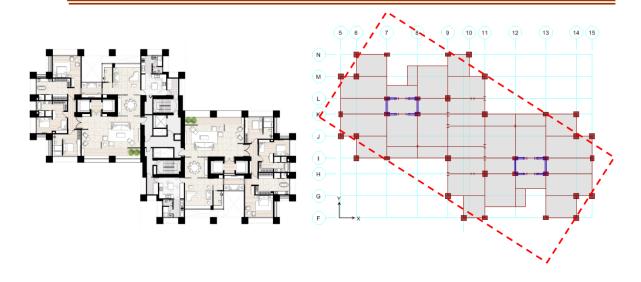
Taipei Basin Design acceleration response spectrum

CASE 1:Energy Dissipation

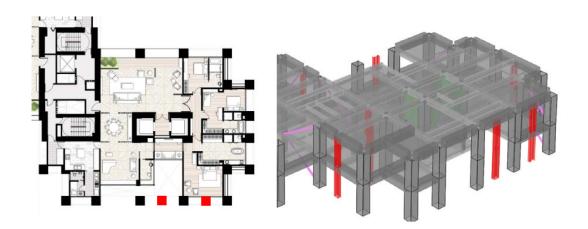

Case 1 Building Summary

- Area of construction base: 5,717.48 m²,and the site is in Zone2.
- 38 stories aboveground, 4 stories underground
- 1st& 2nd floor height :7.2m, lobby height :14.4m
- Standard floor height: 3.6m, Total height: 145m
- Dry-hang marble slab in outside column and beam
- Exterior wall is RC wall with sawed contraction joint or large window.
- Partition wall, separating wall and staircase wall are drywall.
- Central core wall is 15cm RC wall with sawed contraction joint.
- Elevator walls on both sides is use 45cm shear wall for the core wall.


Structure of 1st~2nd Floor


Structure Plane

Superstructure plane



Plane Regularity

Dual Core Dislocation, Symmetry Long side 55m,Short side 25m, Building height 145m

Stub column

Design building facade of stud column matching structure requirements.

Structure summary

- Steel Special Moment Resisting Frame+Buckling Restrained Brace(short side frame)+stub column(long side frame)
- 1F~2F central elevator core and elevator walls of both service core are 45cm shear wall.
- Above the 3F, the central elevator core is use VEM damper.
- Column size

1F~2F: BOX-800×1000(CFT)+RC-1000×1200

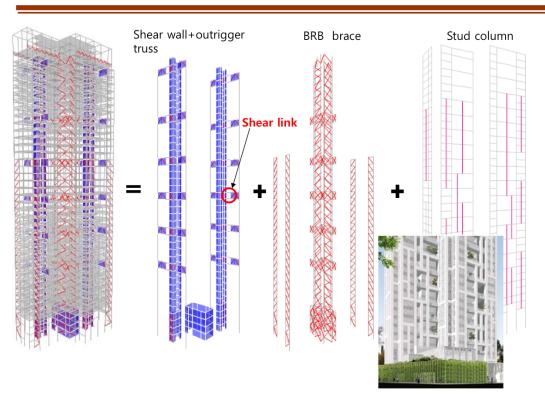
3F~20F: BOX-800×800(CFT)+RC-1000×1000

above 21F: BOX-800×800+RC-1000×1000

Beam size

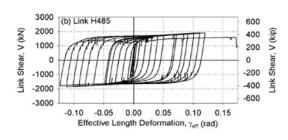
Exterior beam is Steel beam H850×(400~350) with covering 10cm RC

Interior beam is Steel beam H700×(400~350)


Structure system


Problem	6.6.6. (45	Stiffness	6		Comfort	
Correspond with	Soft Story of 1F	(Torsion)	Strength	Toughness	performance	
Central elevator core shear wall	•	•	•			
Service core shear wall	•	•	•			
VEM damper					•	
Stub column		•	•			
Buckling Restrained Brace	•	•	•	•		
Outrigger truss		•	•			
Shear link				•		

Structure system



(a) Web Warping at $\gamma_{eff} = 0.18 \, rad$

(b) Web Tearing Failure

Figure 6: Failure Mode of Link L225

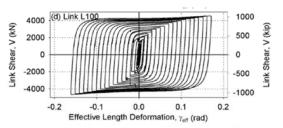
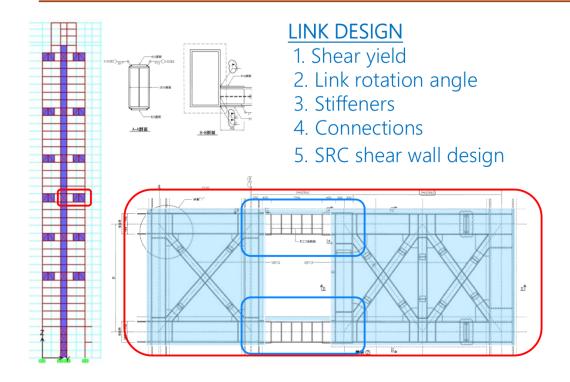
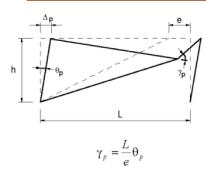
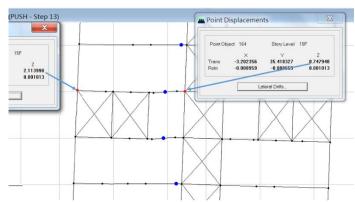
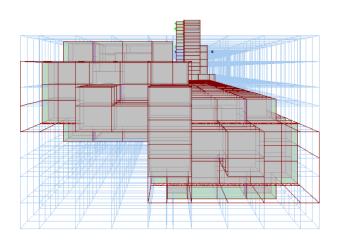



Figure 4: Hysteretic Response of Shear Links under Cyclic Loading

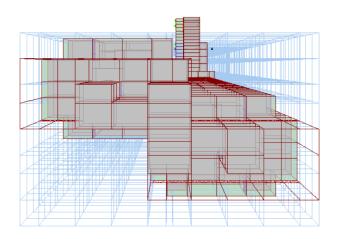

Shear link design



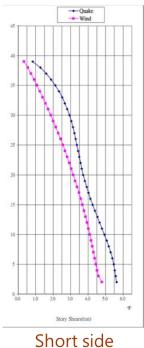
Shear link plastic rotation

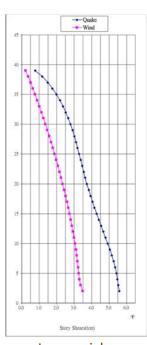

$$\begin{split} r_E &= \theta_E \times \frac{L}{e} \\ r_P &= r_E \times 1.4 \alpha_y Fu \text{(Estimated value)} \\ r_P &= (\theta_{2500} \# - \theta_{ROTATE}) \times \frac{L}{e} \text{(Pushover analysis value)} \\ r_P &= (0.01125 - (2.11 - 0.75) / 8200) \times \frac{8200}{1700} \\ &= 0.0535 < 0.08 \end{split}$$

Shear yield $e < 1.6 \frac{M_P}{V_P}$

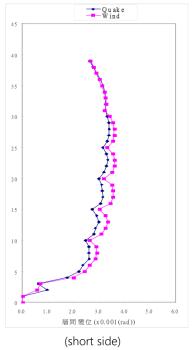


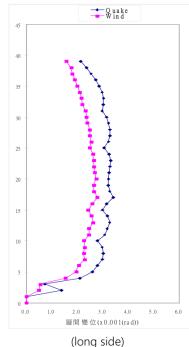
Mode 1 (T=2.9sec)





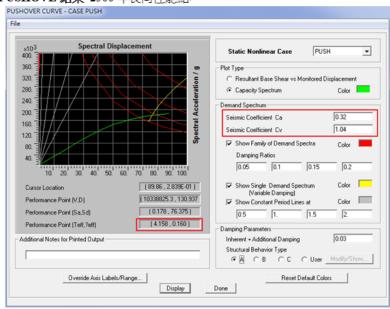
Horizontal force



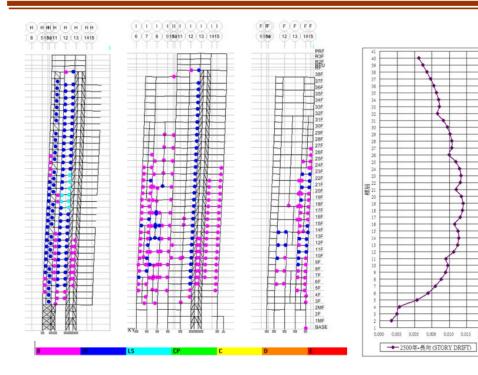


Long side

Compare earthquake and wind force (story drift)

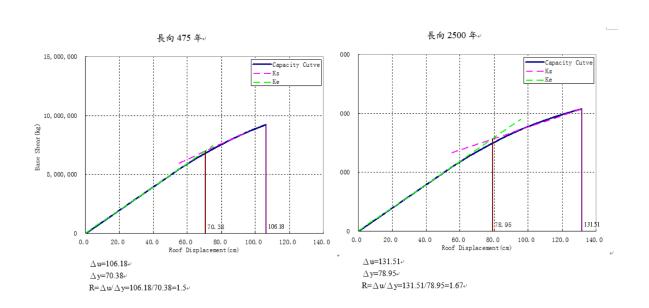


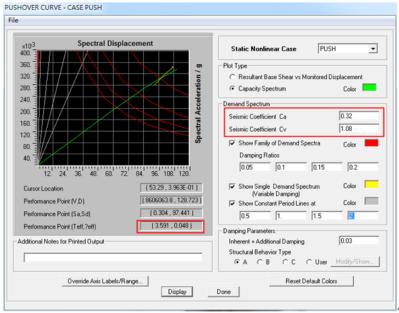
Pushover analysis MCE performance point(long side)

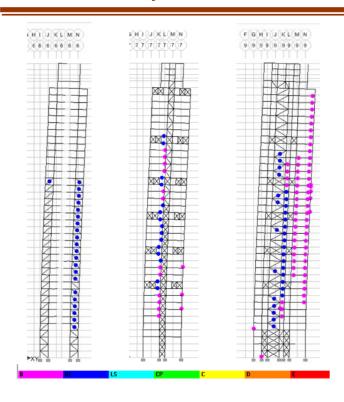


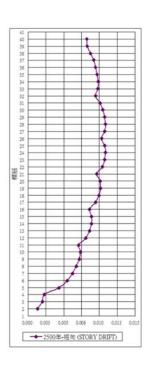
工址:

 S_{DS} =0.8=2.5 C_A T_0^D =1.30= C_V /2.5 C_A ∴C_A=0.32↔


Pushover analysis(long side)

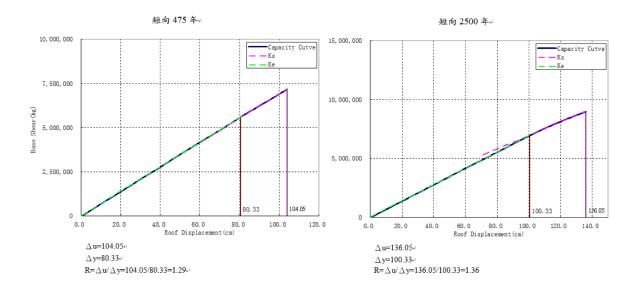

Pushover analysis


PUSHOVE 結果 2500 年短向性能點。

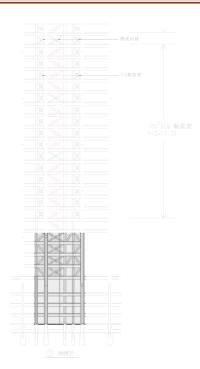


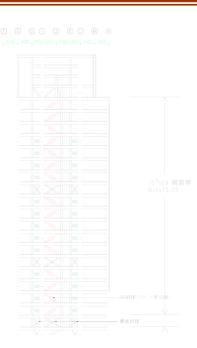
工址: S_{DS} =0.8=2.5 C_A ... C_A =0.32 ψ T_0 ^D=1.30= C_V /2.5 C_A ... C_V =1.04 ψ

Pushover analysis(short side)

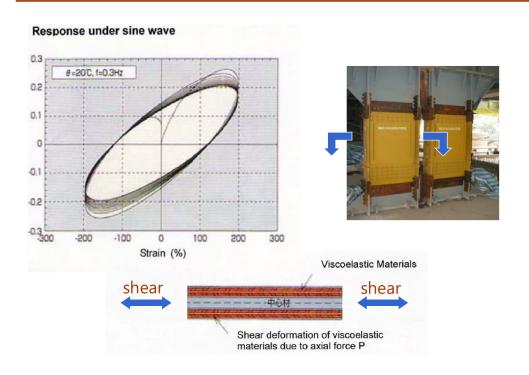


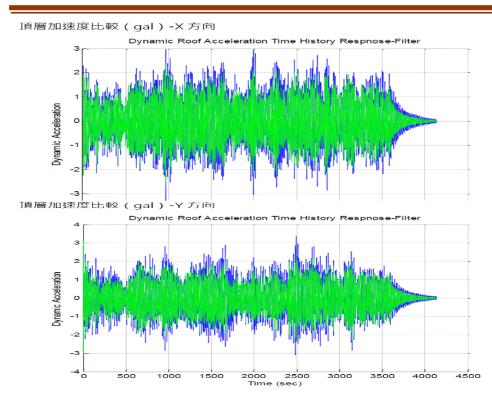
Pushover analysis



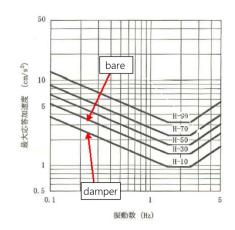


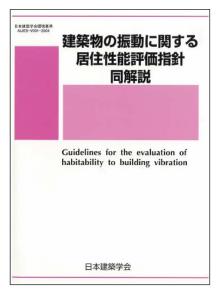
VEM damper arrange for wind




Velocity-displacement damper (NIPPON STEEL-VEM)

Result of wind load analysis



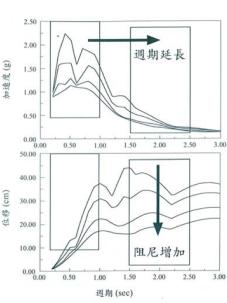


Result of wind load analysis

Damper quantity for wind load	75t VEM : 104 100t VEM : 52
Roof acceleration	bare frame:A=0.035m/sec ²
	damper frame:A=0.025m/sec ²

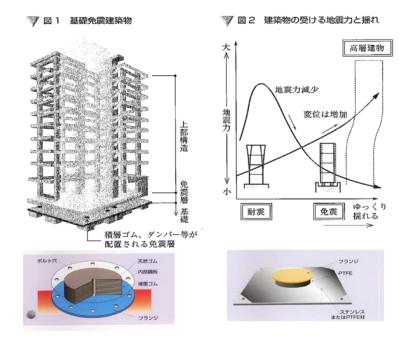
Conclusion of case1

- 1. The use of outrigger truss effectively increases the stiffness of slender structure and reduces the story drift.
- 2. Large earthquakes use BRB braces to (1) dissipate energy (2)combine rigidity and ductility (3) have good seismic resistance.
- 3. Designing the stud column of building façade is for matching structure requirements, increasing structural stiffness, and having aesthetics and mechanics.
- 4. Sufficient structural stiffness and velocity-displacement damper are for comfort performance of wind load.

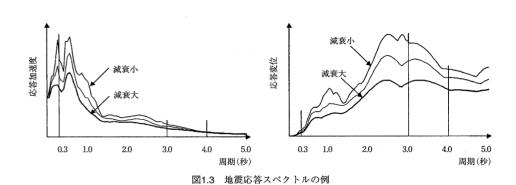


CASE 2: Isolation Design

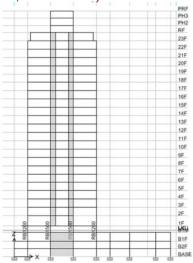
NEW STRUCTURE


Basic concept of seismic base isolation

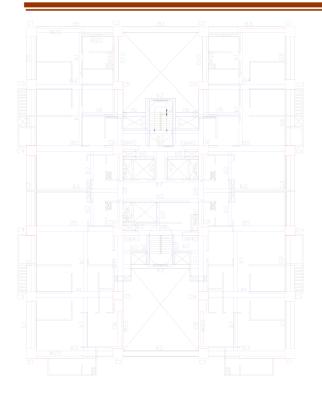
- The seismic design of the general building is based on the toughness which combine the structure strength and ductility.
- The seismic isolation structure is based on the isolation of the energy dissipation system to extend the structural period and increase the damping to decrease the seismic response of the structure.


Seismic isolation principle (Long period effect)

Seismic isolation principle (damping effect)


Isolated structure design

- Performance target setting
- Isolation layer and expansion joint position selection
- Appropriate time history functions for site
- Damping of isolation estimation and static formula calculation
- Time history analysis confirms performance target
- Check the pressure of the rubber bearings
- Reconfirm upper and lower limits of bearing pressure



- Area of construction base: 4,520 m2,and the site is in Zone3.
- 23 stories aboveground, 3 stories underground
- 1st floor height :4.2m , Isolation floor height:2.85m ,Standard floor height:3.5m , Total height: 81.2m

MEMBER 編 號	MEMBER SECTION 断面尺寸

Structure summary

- The building adopts seismic isolation design, the upper structure and the basement are RC moment resisting frame (MRF) and shear wall composite system to increase structural rigidity and improve isolation performance.
- Column size

1F~2F: RC-1300×1100

3F~23F:RC-1100×1100

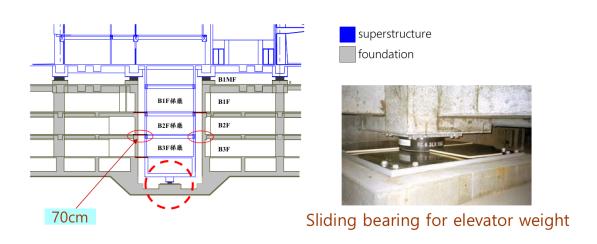
Beam size

2F~13F:RC-600×900,RC-600×1000

14F~RF:RC-600×800,RC-600×900

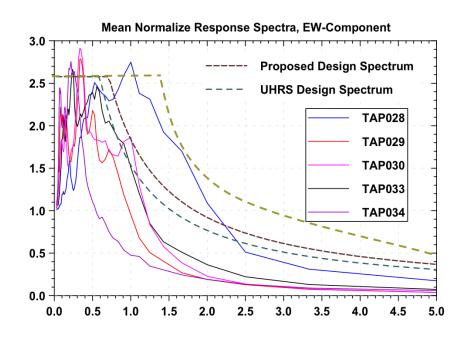
	Isolated meml	ber	Upper structure	foundation
Earthquake scale	Relative displacement (Bearing shear strain)	Base shear coefficient	State of structure	State of structure
30years Return period	D≦24cm (γ≦100%)	≦0.10	-	-
475years Return period (DBE)	D _{TD} ≦48cm (γ≦200%)	≦0.10	-	-
2500years Return period (MCE)	D _{TM} ≦70.0cm (γ≦290% For RB120)	≦0.12	Within the elastic limit	Within the elastic limit

Performance target for Comfort

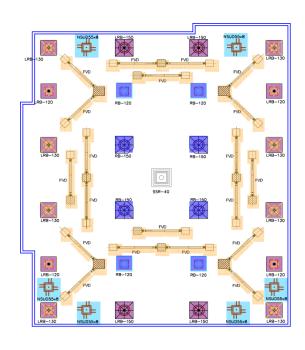


In order to increase the comfort during the earthquake, reduce the overturning of equipment in the building and maintain the function after the earthquake, set the upper structural response acceleration target value as follows

Earthquake scale	23floor Acceleration response
30years Return period	Under 80 cm/s2
475years Return period (DBE)	Under 250 cm/s2
2500years Return period (MCE)	Under 300 cm/s2


Isolation layer and expansion joint position structure selection

- ullet In this case, an isolation layer is installed between B1F and 1F \circ
- Reserve distance for moveable is 70cm


Appropriate Time-History functions for site

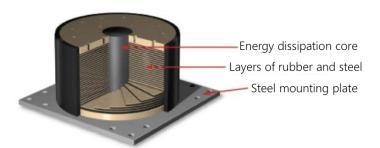
Seismic isolation plan

Isolation device

08 RB multilayer natural rubber

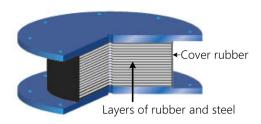
16 LRB multilayer natural rubber

Energy dissipating device


20 Oil damper

06 U-shaped steel damper

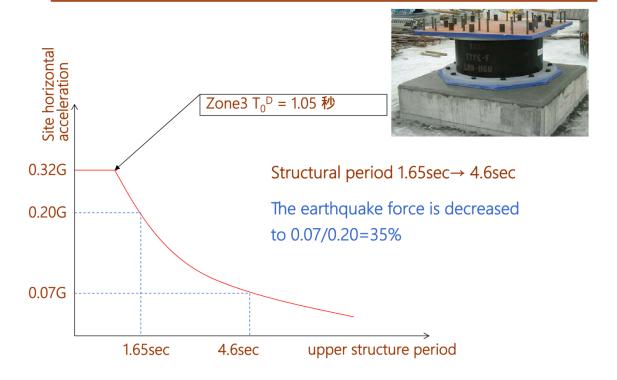
Isolation devices LRB multilayer natural rubber


Isolator Diameter (cm)	Shear modulus (Kg/cm²)	Total rubber thickness(c m)	First shape factor S1	Second shape factor S2	Lead Diameter (cm)	Elastic Stiffness K1(t/cm)	Yielded Stiffness K2(t/cm)	Characteristic Strength Qd(t)	Compression Stiffness Kv(t/cm)
120	4.18	0.8x30 =24	37.5	5.0	24	25.536	2.04	36.22	6,112
130	4.18	0.8x31 =24.8	40.6	5.2	26	29.002	2.35	42.86	7,142
150	5.10	0.8x38 =30.4	46.9	4.9	30	37.330	3.06	57.14	8,673

Isolator Diameter (cm)	Shear modulus (Kg/cm²)	Total rubber thickness(cm)	First shape factor S1	Second shape factor S2	Shear stiffness (t/cm)	Compression Stiffness Kv(t/cm)
120	4.18	0.8x30 =24	35.3	5.0	2.04	5,102
150	5.10	0.8x38 =30.4	44.5	4.9	3.06	7,653

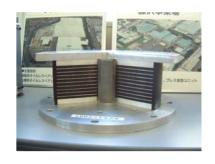
Energy dissipating device U-shaped steel damper

	Initial Stiffness K1(t/cm)	2nd Stiffness K2(t/cm)	Yield Force Qy(t)	Yield Deformation δy(cm)	Ultimate Deformation (cm)
NSUD55X8	19.592	0.3265	62.041	3.17	>70



Long period effect

Damping effect



Provide damping

U-shaped steel damper: 6 units

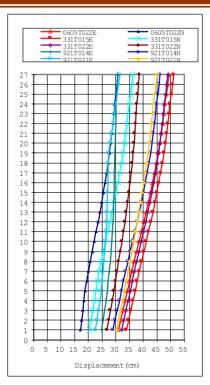
LRB with Energy dissipation core: 16 units

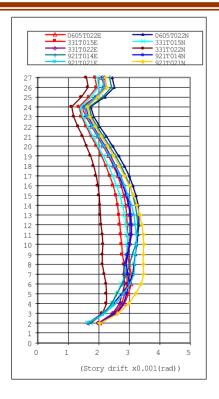
The displacement of the isolation layer is decreased from 1.80m to 0.722m

Energy dissipating device Oil damper

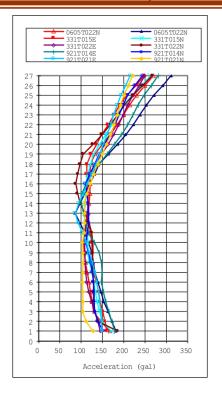
Use 20 units oil damper to decrease the displacement from 0.72m to 0.58m, and then the earthquake force decreased to 35%x0.631=22%

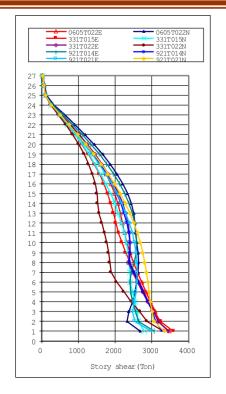
FVD Oil damper F = 90 tf C: the damping constant $C = 21.4 \text{ tf*(s/cm)}^{0.3}$ V: end to end velocity across the element (cm/s)


 $F=CV^{\alpha}$ $\alpha:0.3$

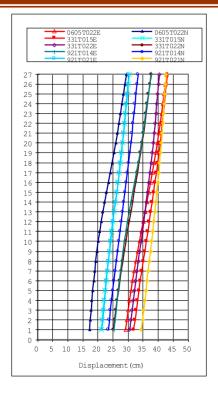


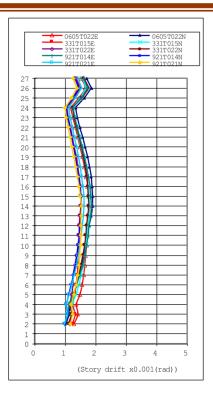
Result of vibration analysis (DBE X-direction)



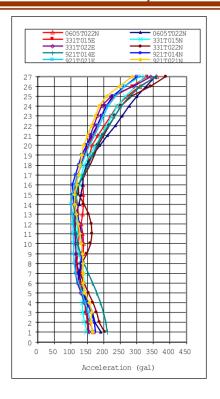


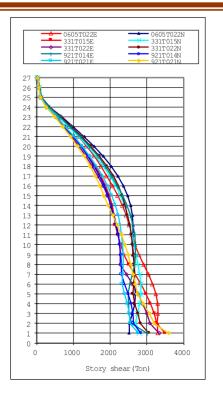
Result of vibration analysis (DBE X-direction)



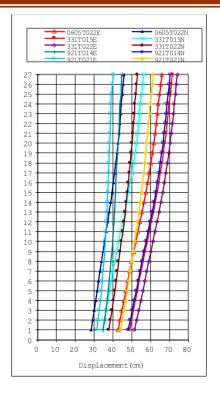


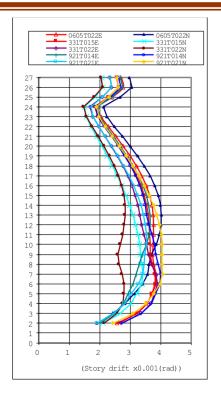
Result of vibration analysis (DBE Y-direction)



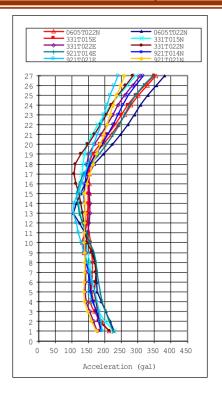


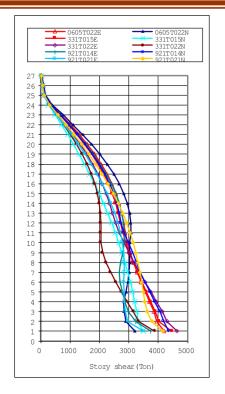
Result of vibration analysis (DBE Y-direction)



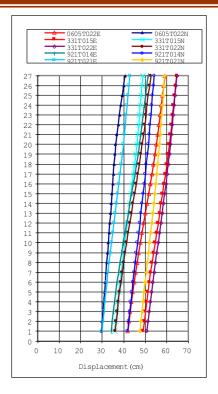


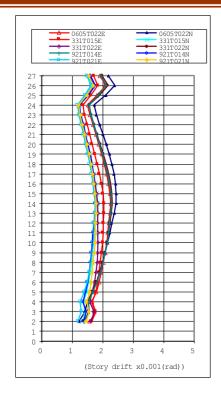
Result of vibration analysis (MCE X-direction)



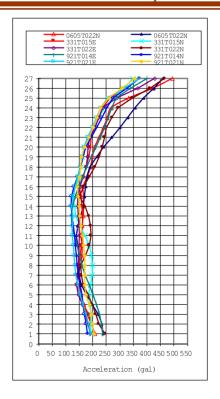


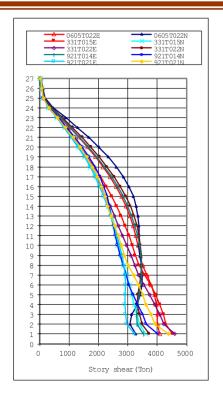
Result of vibration analysis (MCE X-direction)





Result of vibration analysis (MCE Y-direction)





Result of vibration analysis (MCE Y-direction)

Stress of the rubber bearings

RB150

Long-term σ <200 kg/cm² short-term σ <375 kg/cm²

l:
せん新ひずみァにおける圧縮限界強度を次式で規定する。
(a) $\sigma_{\sigma} \left(1 - \frac{4}{\alpha_{c} \cdot S_{2}} \right) < 30 \text{ obs}$
$\sigma = \sigma_{\sigma} \left(1 - \frac{\gamma}{\alpha_c \cdot S_2} \right) (\sigma$ の上限値は 60)
(b) $\sigma_{cr} \left(1 - \frac{4}{\alpha_{c} \cdot S_{2}} \right) \ge 30 \text{ obs}$
$\sigma = \sigma_{\sigma} \left(1 - \frac{\gamma}{4} \right) + \frac{30}{4} \gamma \left(\sigma \sigma \right) $ 上限値は 60)
以下は (a), (b) 共通である。
$\sigma_{\omega} = \zeta \cdot G \cdot S_1 \cdot S_2$ $foas (S \ge 3000 E^{\frac{1}{2}})$
; <= 0.85 (S,≧30のとき) 0.90 (S,⟨30のとき)
α = {1 (S _s <4のとき) 0.1(S _s −3)+1 (S _s ≥4のとき)
S ₃ =
$\omega \sigma_{\sigma} \left(1 - \frac{4}{\sigma_{\sigma} \cdot S_{1}}\right) < 30 \text{ m/s}$ (6) $\sigma_{\sigma} \left(1 - \frac{4}{\sigma_{\sigma} \cdot S_{1}}\right) \ge 30 \text{ m/s}$
$\sigma = \sigma_{\sigma} \left(1 - \frac{y}{\sigma_{\sigma} \cdot S_{1}} \right) \qquad \sigma = \sigma_{\sigma} \left(1 - \frac{y}{4} \right) + \frac{30}{4} y$
10 (γ ₁ , σ ₂) ((ξ(since) (1) (γ ₁ , σ ₂) (γ ₁ , σ ₂) (γ ₁ , σ ₂)
り
用 (Y ₁ , σ ₂) 30 (Y ₁ , σ ₃) σ,300 (Y ₁ , σ ₃)
4 9,5
せん新ひずみ ア せん新ひずみ ア

	1	2	3	4	DL	1
G	90	128	123	93	LL	0.5
F	107	98	101	95	EX	0
E	123	148	147	120	EY	0
D	125	149	150	122		
С	114	104	110	101		
В	101	136	130	103	單位·Kg	/cm²

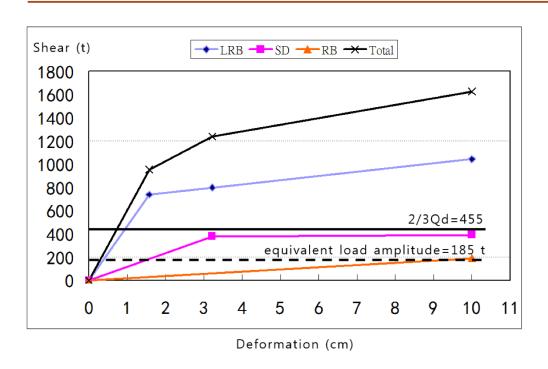
54 45	57 64	245	191		
45					
	04	154	161		
39	95	173	167		
1	2	3	4	DL	1
54	243	227	156	LL	0.5
12	73	89	99	EX	0
22	206	208	119	EY	1
26	93	95	123		
07	133	120	97		
39	18	23	41	3 - 3	
		1 2 54 243 12 73 22 206 26 93 07 133	1 2 3 54 243 227 12 73 89 22 206 208 26 93 95 07 133 120	1 2 3 4 54 243 227 156 12 73 89 99 22 206 200 119 26 93 95 123 07 133 120 97	1 2 3 4 DL 54 243 227 156 LL 12 73 89 99 EX 22 206 208 119 EY 26 93 95 123 07 133 120 97

	1	2	3	4	DL	- 1
G	14	45	196	161	LL	0
F	35	43	147	147	EX	- 1
E	47	44	235	179	EY	0
D	46	48	236	184		
С	38	59	149	155	-	
В	33	87	165	161		

	1	2	3	4	DL	1
G	149	236	220	151	LL	0
F	106	68	84	93	EX	0
E	115	197	198	112	EY	- 1
D	118	83	85	116		
С	100	128	114	91		
В	33	10	15	35		

-1		1	2	3	4
[G	130	150	150	130
	F	120	120	120	120
Ī	E	120	150	150	120
[D	120	150	150	120
	С	120	120	120	120
1	В	130	150	150	130

	1	2	3	4	DL	1
G	161	205	44	21	LL	0.5
F	173	149	50	38	EX	-1
E	193	242	50	54	EY	0
D	197	241	55	54		
С	183	144	65	41		
В	164	178	87	39		


	1	2	3	4	DL	1
G	26	13	20	31	LL	0.5
F	102	124	113	91	EX	0
E	124	89	87	121	EY	-1
D	124	206	205	121		
С	120	75	100	106		
n	164	OFF	000	165		

	1	2	3	4	DL	1
G	156	197	38	16	LL	0
F	167	144	45	33	EX	-1
E	185	232	40	47	EY	0
D	189	231	45	46		
C	176	139	59	35		
В	159	170	80	33		

	1	2	3	4	DL	1
G	21	6	13	26	LL	0
F	96	119	108	86	EX	0
E	117	80	77	114	EY	-1
D	117	196	195	114		
С	113	70	94	100		
В	159	247	230	159		

Conclusion of case2

- 1. It is insufficient to consider long period effects in Taipei basin if only displacement-dependent dampers are used.
- 2. The deformation decreased greatly by viscous damper.
- 3. Viscous damper can decrease the demand of deformation in displacement-dependent damper in high-rise buildings under the influence of wind force.

Sloped Rolling-Type Seismic Isolation Design For Critical Equipment in High-Tech Factories, Museums, and Emergency-Response Centers

Experiences

 Engineer, VIO Creation Technology Inc.

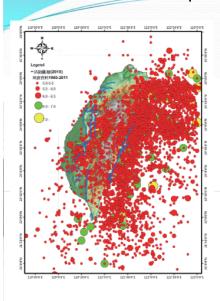
Dr. Mu-sen Tsai

Vice General Manager of VIO

Dr. Mu-sen Tsai is currently as an vice general manager of VIO Creation Technology Inc. in Taiwan.

Dr. Tsai is in charge of designing devices to protect machines applied in semi conductor industry from earthquake damage. He has also designed isolation systems for institute of history and philosophy, Academia Sinica.

Sloped rolling-type seismic isolation design for critical equipment in high-tech factories, museums, and emergency-response centers



Outline

- (1) Seismic Protection
- (2) Design concept
- (3) Shaking table tests
- (4) Applications

Earthquake!! An inevitable fate!!

Lessons and experiences from the 921 Earthquake (Magnitude 7.3, 1999/09/21 1:47AM)!!

2,444 dead, 50 missing, 758 injured, 38,935 houses collapsed and 5,320 houses damaged.

Earthquakes are happening more frequently and with more intensity. When and where will the next one occur

Based on the statistics from the 1990s until now, an earthquake over Magnitude 6 will occur every 10 years in western Taiwan. From 2001 to 2013, five great earthquakes occurred in middle and southern Taiwan; such frequency is terrifying!

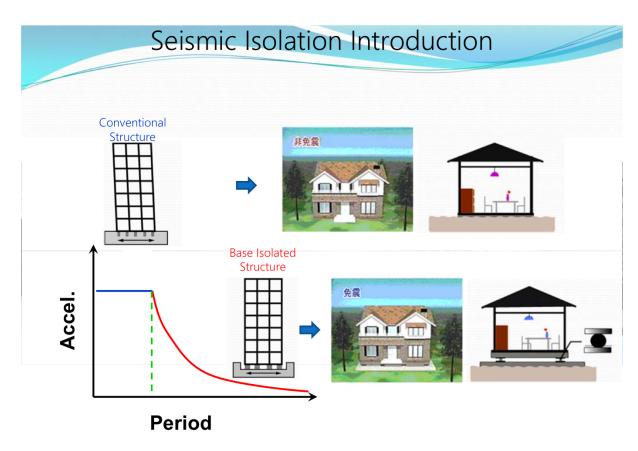
Seismic demand of Emergency Center

System was shutdown for more the 17 hours due to the damage of the facilities in control tower.

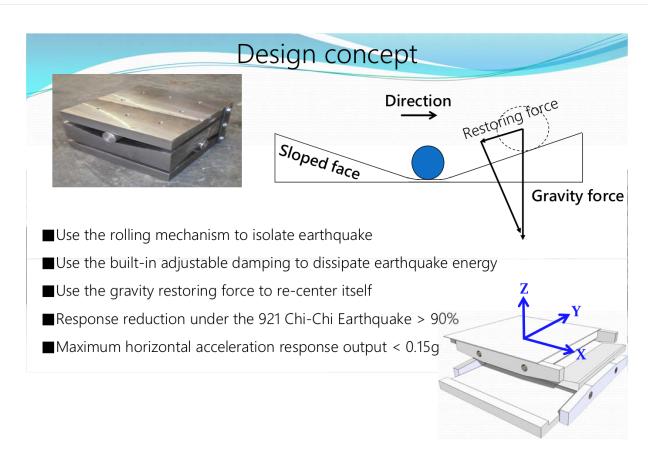
Seismic demand of Museum

Even though many buildings that preserve valuable antiques and arts were not obviously damaged in the 1999 921Chi-Chi Earthquake, many antiques and arts were severely wrecked. The 2008 Wen-Chuan Earthquake caused 68 key units and 142 provincial units that preserve valuable antiques and arts to be wrecked in China.

Seismic demand of High-Tech Industry


The 1999 921 Chi-Chi Earthquake brought great damage to Taiwan Hsinchu Science Park. The maximum ground acceleration measured was 0.12g, which may not cause severe damage to equipment or facility structures. However, they may malfunction due to the damage on parts

they may malfunction due to the damage on parts. After investigation, the economic loss is over NT\$10 billion, and the indirect economic loss is even inestimable.


Brand & Model	Tolerated instantaneous acceleration		
DEC - ALPHA SERVER - #8200	0.5 g		
DEC-ALPHA SERVER- #4100	1 g		
DEC– RZ 26 DRIVE UNIT	0.2 g		
DEC- RZ 28 DRIVE UNIT	0.5 g		
DEC- RZ 29 DRIVE UNIT	0.5 g		
HP- MODEL 20 DRIVE UNIT	0.25 g		
HP- ENTERPRISE 9000	0.5 g		
SGI- ORIGIN FIBER VAULT	0.25 g		
SUN CLASS III DRIVE	0.25 g		

According to different brands and models of IT facilities, the shockproof ability is between 0.2g to 0.5g in short duration time.

Seismic Isolation Strategy Transmitted acceleration responses (3) Isolation technology (1) No protection (2) Reinforcement Seismic energy is concentrated in equipment, enlarged acceleration (serious deformation) Let it shake and then crash Isolate and dissipate most of horizontal earthquake input energy, control horizontal seismic responses of equipment Effective seismic protection and function-maintenance (3)(1)(2)Floor strategy!! Input excitation

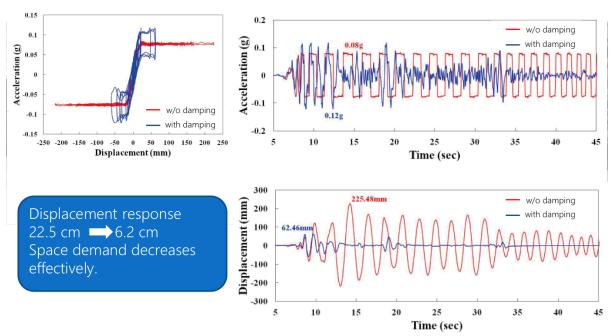
Seismic Isolation Strategy Extension of Period + Increase of Damping 2.5 2.0 Acceleration (g) Displacement (cm) Extension of Period 20 0.5 Increase of damping 0 0.5 1.0 0.5 1.0 1.5 2.0 Period (sec) Period (sec) Isolation device Damper

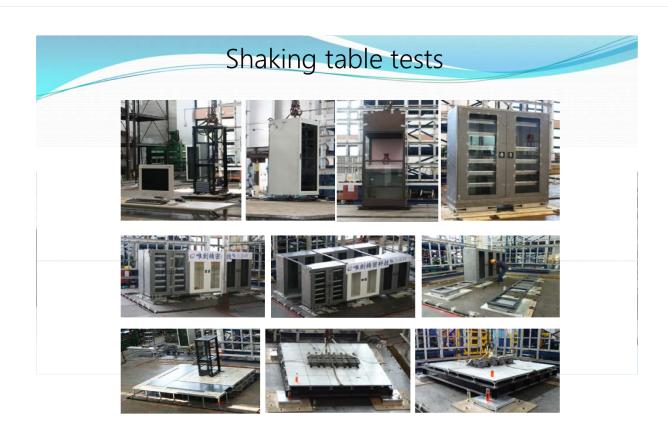
Equation of Motion

Equation of Motion =

Gravity Restoring Force + Rolling Friction + Built-in Adjustable Damping

Optimum design?


- (1) Tolerated acceleration
- (2) Space (requirement of displacement)

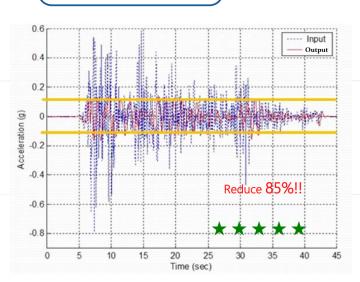

Product Features

- 360 degree horizontal protection
- Acceleration response is stable and controlled to be less than 0.15g.
- No fixed vibration frequency so that no resonance will occur with the to-be-protected object.
- The multi-roller design enables the isolation device to stay stable even if it's under eccentric load.
- The energy dissipation mechanism from the built-in damping can better control the displacement.
- Automatically re-centers itself after earthquakes.
- Unlimited installation and use to save investment costs.
- Easy to install, ready to use instantly and no need of extra holes to set it.

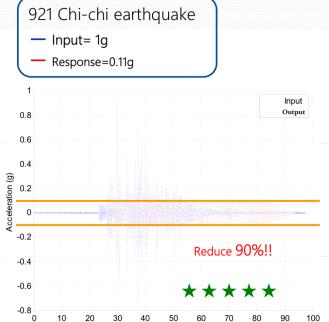
The Importance of Damping

The energy dissipation mechanism from the built-in damping effectively controls displacement caused by earthquakes and can re-center the isolation device immediately.

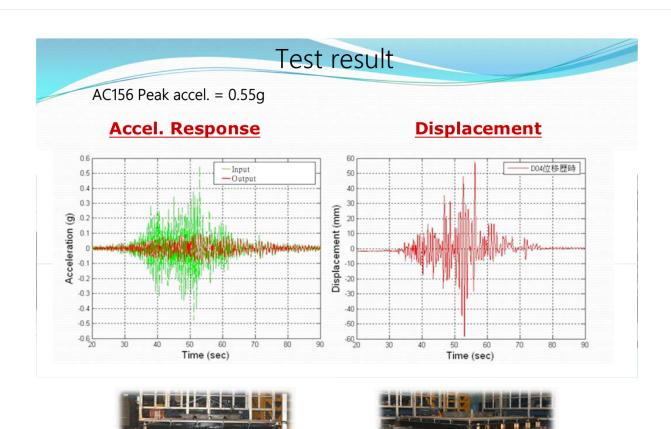
Shaking table tests



Test result

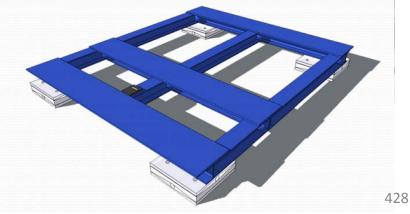


- EL Centro earthquake
- Input= 0.8g
- Response=0.11g



Test result

Time (sec)



Test on Isolated Reticle Stocker

Seismic target

<u>Target</u>

- 1. Acceleration response < 150gal \circ
- 2. Maximum displacement < 20cm •
- 3. Residual displacement < 10mm $^{\circ}$

Setup illustration

RST is fixed by 4 M10 screws.

Test result

			Accel. (X,Y,Z gal)			Residual Disp. (X,Y,Z mm	
No.	No. Intensity Targ	Target	Shaking table	MRB	Facility	MRB	
1	4	25	17, 45 , 31	15,44, 32	27, 45, 31	0.2 , 0.1	
2	5	80	104, 138 , 38	34,54, 36	60, 57, 37	0.1 , 0.1	
3	6	250	264, 325 , 91	50,65, 87	79, 76, 89	0.1 , 0.1	
4	7	400	409, 522 ,152	64,78,140	96, 92,144	0.3 , 0.1	
5	7 ↑	600	531, 729 ,236	73,79,271	121,101,267	1.1 , 0.1	
6	7 ↑	850	654 , 948, 314	81,83,305	115,106,315	0.6 , 2.0	
ADDL'T	7↑	1000	696 ,1036, 365	81,91,349	115,113,359	0.6 , 2.5	

Test on Isolated Furnace tube facility

Seismic target

Target

- 1. Acceleration response < 40gal $\,^{\circ}$
- 2. Maximum displacement < 14cm \circ
- 3. Residual displacement < 30mm \circ

Comparison between facility W/O VS. With Isolator

X (Depth of facility)	20gal		40gal		800	80gal	
Top of Facility	48	15	97	17	156	21	
Top of Boat	227	234	380	296	473	287	
Bot. of Boat	42	10	83	11	1/31	13	
VIO BASE	35	9	68	10	/104	15	
(Width of facility)	13	gal	25	gal	510	gal	
Y (Width of facility) Top of Facility	13 35	gal 26	25 64	gal 25	510	gal 32	
							
Top of Facility	35	26	64	25	104	32	

According to experience, the wafers and silicon boats broken once the peak of acceleration exceeds 80 gal.

Actual Experience

Earthquake event	Project place	Distance to epicenter	Magnitude	Local intensity	Results
Jiaxian Earthquake 2010.03.04	Tainan (6F)	25km	6.4	5	Safe
Nantou Earthquake 2013.03.27	Tainan (6F)	120km		4	Safe
	Nantou (3F) IDC	2km	6.1	6	Safe
	Taipei (3F) antique storage room	150km		2	Safe
Hualien Earthquake 2013,10,31	Tainan (6F)	100km		2	Safe
	Nantou (3F) IDC	50km	6.3	3	Safe
	Taipei (3F) antique storage room	180km		3	Safe

Note: Seismic intensity scale (Courtesy of CWB)

Note: Seismic Intensity scale (Courtes) of CWB)
Seismic Intensity 4 (Moderate), ground acceleration: 25-80 gal
Seismic Intensity 5 (Strong), ground acceleration: 80-250 gal
Seismic Intensity 6 (Very strong), ground acceleration: 250-400 gal
Seismic Intensity 7 (Great), ground acceleration: 400 gal and above

Seismic Isolation for Art and Antique Exhibitions

Application

It is easy to install by positioning MRB directly under arts, antiques or display cabinets. MRB is aesthetically designed, light and ready to use instantly.

Seismic Isolation for Storage Cabinets

Application

MRB60WD model applied to the storage cabinets in the Institute of History and Philology, Academia Sinica.

STEP 1

STEP 2

STEP 3

Seismic Isolation for Information Facilities

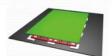
Single cabinet with MRB

- ■Easy to install, no need of extra construction
- Reserved surrounding space for the isolation displacement
- Reserved cable lengths that can accommodate the isolation displacement

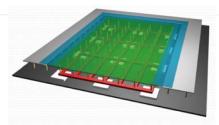
Multiple cabinets with MRB

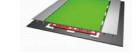
- Applicable to tandem cabinets
- Modular installation
- ■Good plane rotation control and good use of space
- Reserved surrounding space for the isolation displacement
- Reserved cable lengths that can accommodate the isolation displacement

Seismic Isolation for Information Facilities

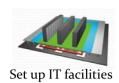

- Easy to install, with immediate setting upon arriving and no need of complicated installation procedure.
- Equipment could be set up with help of a ramp without disassembling interior drive units.
- MRB is equipped with anti-slip pads to simplify the installation of equipment.

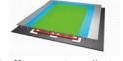
Seismic Isolation for Raised Floor Systems





Modular frame installation

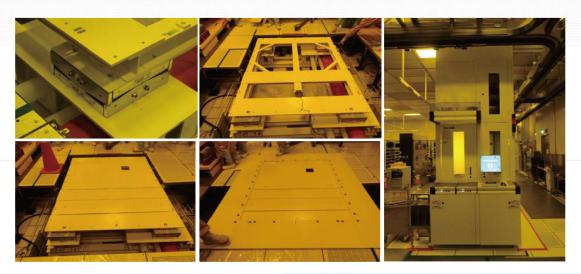



Isolated raised floor installation

Raised floor installation

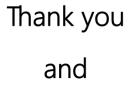
Buffer area installation

Seismic Isolation for Raised Floor Systems



Application

Seismic isolation area is 73.44m², constructed with a raised floor system, modular frame and 24 sets of MRB60WD. The maximum acceleration transmitted from MRB to raised floor system does not exceed 0.12g.



Seismic Isolation for High-Tech Industry

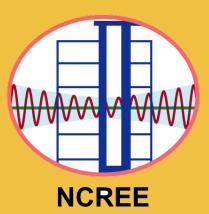
Application

As the semiconductor instruments in UMC were already installed with intricate cables under the raised floor, MRB could not be directly installed on the concrete floor. We designed another steel foundation to accommodate the existing cables and to install MRB.

Questions?

Experiences

 Associate Professor at Institut Teknologi Bandung (ITB)


Dr. Ir. Muslinang Moestopo

Associate Professor at Institut Teknologi Bandung (ITB)

Dr. Muslinang Moestopo is a lecturer and researcher at civil engineering at Faculty of Civil and Environmental Engineering of Institut Teknologi Bandung (ITB). He received bachelor degree in civil engineering (1985) from ITB, then Master Degree (1989) and Ph.D degree (1994) from University of Wisconsin-Madison.

He specializes and has authored many papers in the area of seismic resistant steel structures.

Sponsored by:

