くく<

The International Joint Workshop

Structural Design of High-Rise Buildings with Passive Control Devices

Aula Barat, ITB Campus, 20-21 August 2018

The International Joint Workshop

Structural Design of High-Rise Buildings with Passive Control Devices Aula Barat, ITB Campus, 20-21 August **High-Rise Buildings with**

Aula Barat, ITB Campus, 20-21 August 2018

Table of Contents

Table of Contents	3
Activities of NCREE on Research and Applications of Passive Control Technology	. 4
Shyh-Jiann Hwang, Director General of NCREE and Professor at NTU	
From Seismic Isolation to Building Mass Damper	. 28
Kuo-Chun Chang, Professor at NTU	
Design and Construction of High-Rise Buildings with Seismic Isolation System in Indonesia	. 48
Davy Sukamta, Chairman and Founder of Davy Sukamta & Partners	
Taipei 101 – Śtructural Design and Application of Wind Damper	. 89
Shaw Shieh, Chairman of Evergreen Consulting Eng. Inc & Adjunct Professor at NTU	
Structural Design and Maintenance of Hualien Tzu Chi Seismically Isolated Hospital	115
Paul Chen-Yang Ko, Chairman of Taiwan Eng. Consultants Group	
Mid-Story Isolation Design for NTU Civil Engineering Research Building with Precast Technology	. 150
Tzu-Liang Wu, Vice President of Ruentex Eng. & Constr. Co., Ltd	
Design, Testing and Analysis of Buckling-Restrained Braced Frames	196
Keh-Chyuan Tsai, Professor at NTU	
Seismic Design of Buildings with Viscous Dampers	233
Yin-Nan Huang, Associate Professor at NTU	
Taiwan Seismic Design Code for Passive Control Systems	250
Shiang-Jung Wang, Associate Professor at NTUST	
Viscoelastic Coupling Dampers (VCD) for Enhancing the Seismic Resilience of Jakarta Signature Tower	293
Sugeng Wijanto, Chairman and Founder of PT Gistama Indonesia	
Structure Design and Application of the High-tech Facilities	315
Jeng-Wei Li, Principle of TEAM Constr. & Eng. Consulting Ltd	
Viscous Damper Evaluation in High-Rise Building and Ideal Examples for Code Base Shear	
Reduction by Additional Viscous Damping	345
Stephen Huang, Vice President of Federal Eng. Consultant, Inc.	
Energy Dissipation vs. Isolation Design of High-Rise Mansion Buildings in Taipei Basin	
Hsien-Kai Liu, Vice General Manager of HML & New Structure Group	387
Sloped Rolling-Type Seismic Isolation Design For Critical Equipment in High-Tech Factories,	
Museums, and Emergency-Response Centers	418
Mu-Sen Tsai, Vice General Manager of Vio Creative Technology	
Recent Development of Seismic Metallic Dampers in Indonesia	437
Muslinang Moestopo, Associate Professor at ITB	

Activities of NCREE on Research and Applications of Passive Control Technology

Dr. Shyh-Jiann Hwang

Director General of NCREE and Professor at the Department of Civil Engineering of NTU

Experiences

- Deputy Director, NCREE, NARL
- President, CTSEE
- President, CSSE
- Director, CEER, NTU
- Professor, NTUST

Contact at:

<u>sjhwang@ncree.narl.org.tw</u> <u>sjhwang@ntu.edu.tw</u> Dr. Shyh-Jiann Hwang is a Professor of Civil Engineering at the National Taiwan University, and also serves as the Director of the National Center for Research on Earthquake Engineering, Taipei, Taiwan. He received his PhD from the University of California at Berkeley. He has been the president of the Chinese Taiwan Society for Earthquake Engineering (CTSEE) from 2014 to 2018, and also the president of the Chinese Society of Structural Engineering (CSSE) from 2008 to 2012.

Dr. Shyh-Jiann Hwang is a member of Joint ACI-ASCE Committee 352, Joints and Connection in Monolithic Concrete Structures. His research interests include seismic design of reinforced concrete structure, shear behavior of reinforced concrete members, and seismic retrofitting of reinforced concrete structures. He is also a Principal Investigator for Taiwan seismic code for reinforced concrete structures, school building retrofitting program, pioneer research project for nuclear power plant, and hazard risk evaluation for the support structure of offshore wind farms.

MARLabs 國家實驗研究院 國家地震工程研究中心 2018 The International Joint Workshop
Structural Design of High-Rise Buildings with
Passive Control Devices

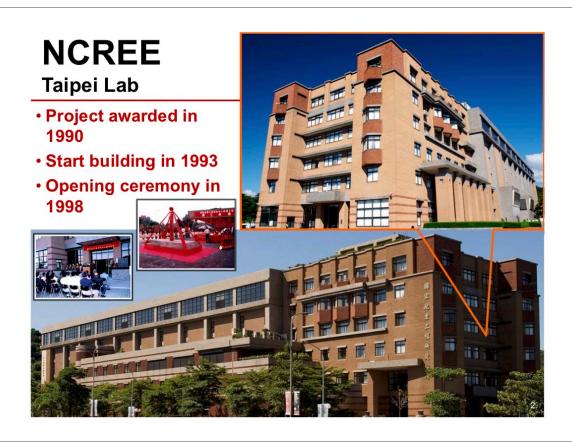
Activities of NCREE on Research and Applications of Passive Control Technology

Shyh-Jiann Hwang

Director
National Center for Research on Earthquake Engineering

Professor National Taiwan University

August 20, 2018


承諾·熱情·創新

www.narlabs.org.tw

Outline

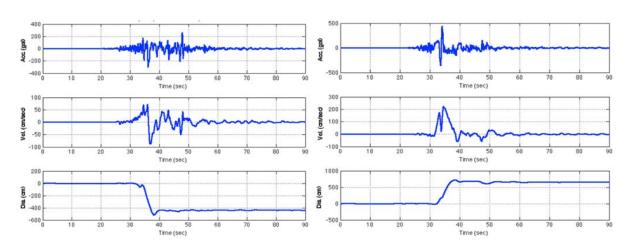
- History and Purpose of NCREE
- Testing Facilities at NCREE

Threats of Near Fault Ground Motions

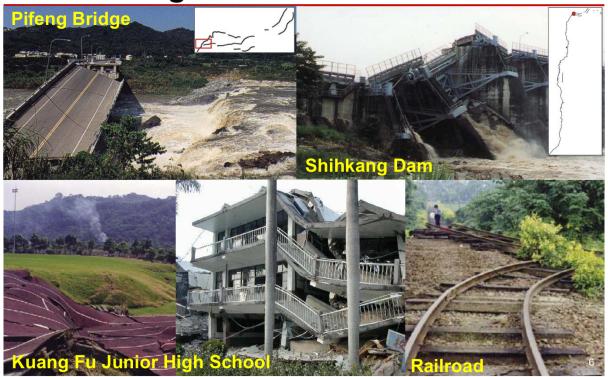
- 2.5 million buildings and 8.6 million people within 10 km around active faults
- Nearly 1/3 population of Taiwan under threats of near fault ground motions

3

Features of Near Fault Ground Motions (I)



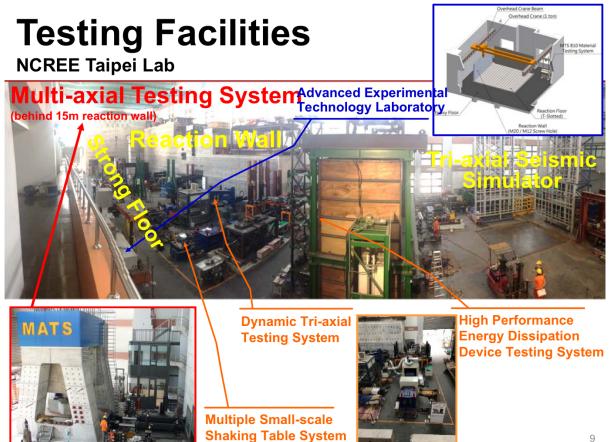
Large permanent ground displacement


4

Features of Near Fault Ground Motions (II)

- High velocity pulse
- Long period of pulse

Effects of Near Fault Ground Motions on Buildings and Infrastructures

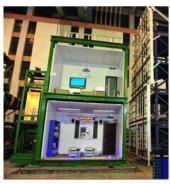


NCREE Tainan Lab (I)



NCREE Tainan Lab (II)

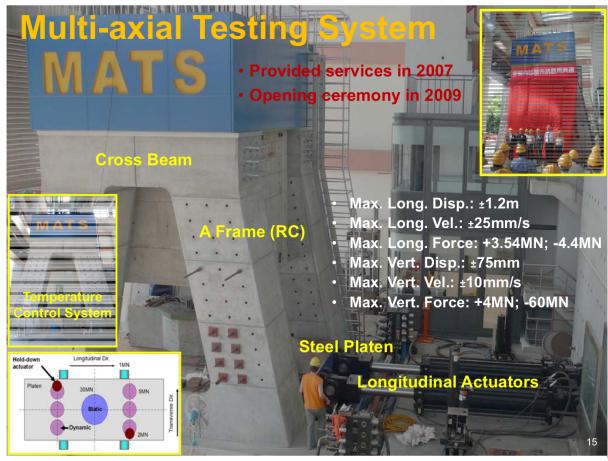
Tri-axial Seismic Simulator


項目	規格	
最大載重 <i>任</i> Maximum Specimen	50,000	
最大扭矩(公月 Overturning Mom	150,000	
頻率範圍 Frequency Range (Hz)	最大值 Maximum	50
	最小值 Minimum	1
最大位移量 Max. Displacement (mm)	縱軸 (X向) Longitudinal	±250
	横軸 (Y向) Lateral	±100
	垂直軸 (Z向) Vertical	±100
最大速度 Max. Velocity (mm/sec)	縱軸 (X向) Longitudinal	±1,000
	横軸 (Y向) Lateral	±600
	垂直軸 (Z向) Vertical	±500
最大加速度 Max. Acceleration (g)	縱軸 (X向) Longitudinal	2
	横軸 (Y向) Lateral	1.5
	垂直軸 (Z向) Vertical	1
振動台尺: Table Siz	5m x 5m	

Test Experience

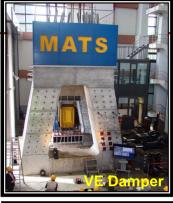
Demonstration Test (I)

Demonstration Test (II)



13

Demonstration Test (III)


14

Test Experience

16

Demonstration Test (I)

Demonstration Test (II)

Demonstration Test (III)

Reaction Wall and Strong Floor

- Max. hydraulic flow rate: 1325gpm
- 28 hydraulic outlets
- Quasi-static cyclic loading tests
- Pseudo-dynamic tests
- Hybrid simulation

20

Test Experience

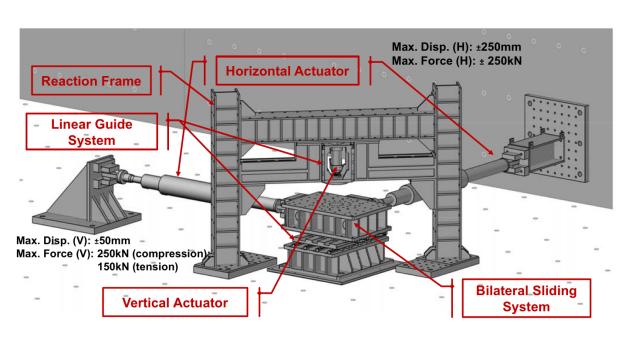
High Performance Energy Dissipation Device Testing System

• Max. Disp.: ±0.6m

Max. Vel.: ±1.0m/s
 Max. Force: ±2.0MN

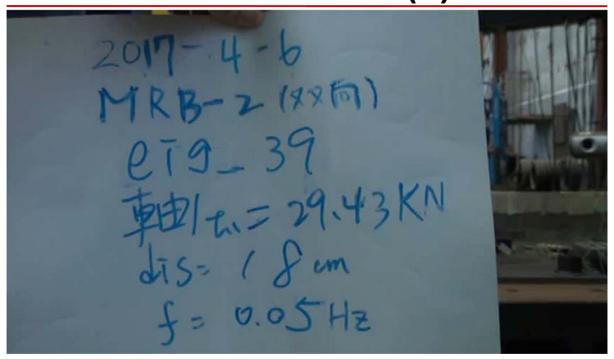
Temperature control

range: +5°C~+50°C

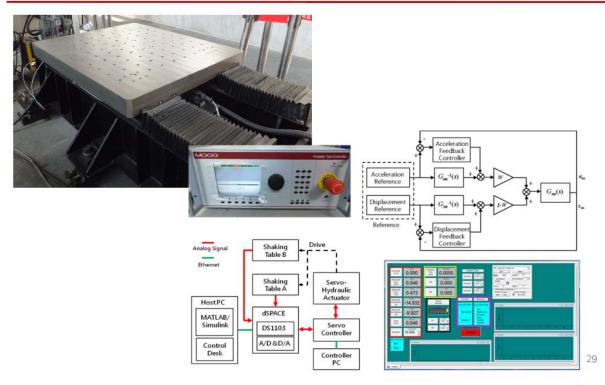

Demonstration Test (I)

Demonstration Test (II)

Dynamic Tri-axial Testing System



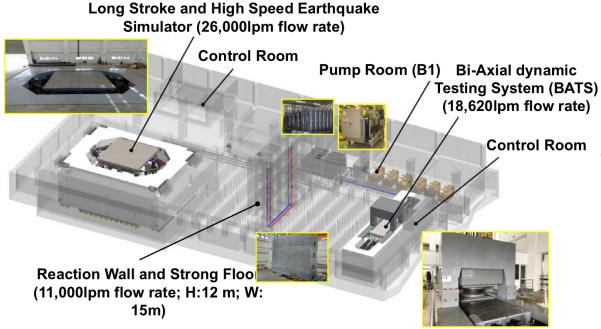
Demonstration Test (I)



Demonstration Test (II)

28

Multiple Small-scale Shaking Table System


Demonstration Test

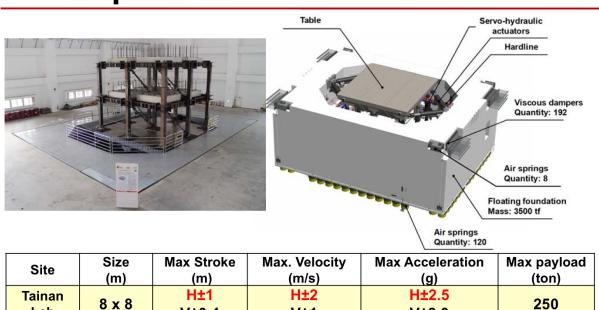
30

Testing Facilities

NCREE Tainan Lab

Long Stroke and High Speed Earthquake Simulator

V±0.4


H±0.25

V±0.1

Lab

Taipei Lab

5 x 5

V±1

H±1

V±0.5

V±3.0

H±1.5

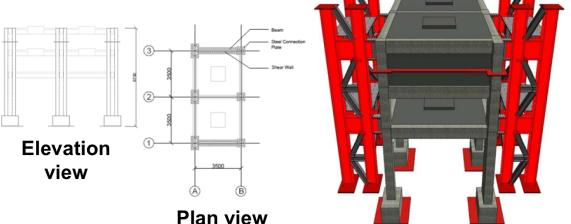
V±1.0

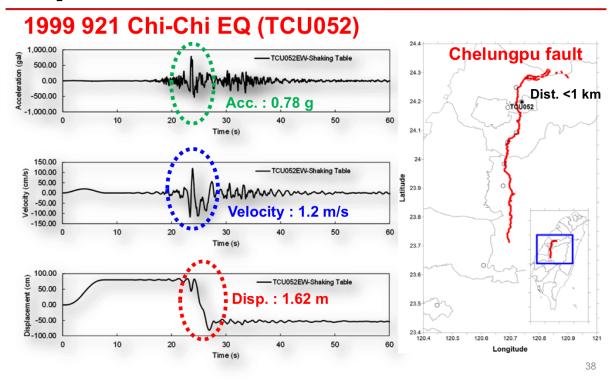
50

Demonstration Test (I)

1999 921 Chi-Chi EQ (TCU052)

Demonstration Test (II)

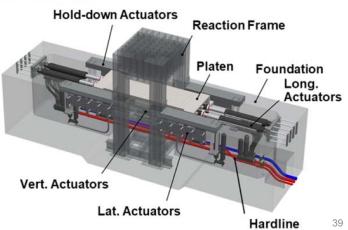

Test Purpose


Test Specimen

3-story RC building

- 1/2 scale with non-ductile detailing
- High ceiling at 1st floor and soft story behavior
- Weight: 67 ton (97 ton w/ fail-safe frame)
- · 1st modal frequency: 2.5 Hz

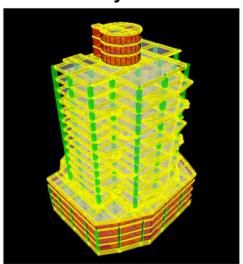
Input Ground Motion



Bi-Axial dynamic Testing System (BATS)

30
30
60
8
0.15
75
4
1
1200

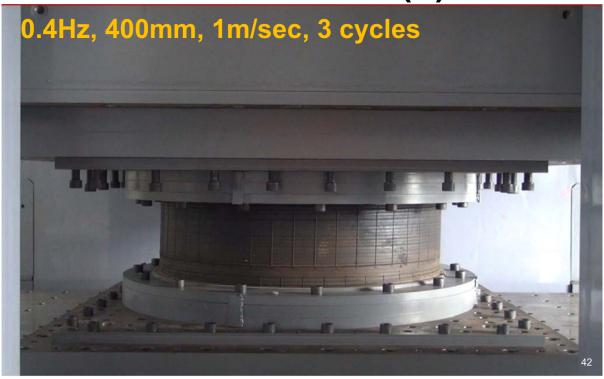
Demonstration Test (I)

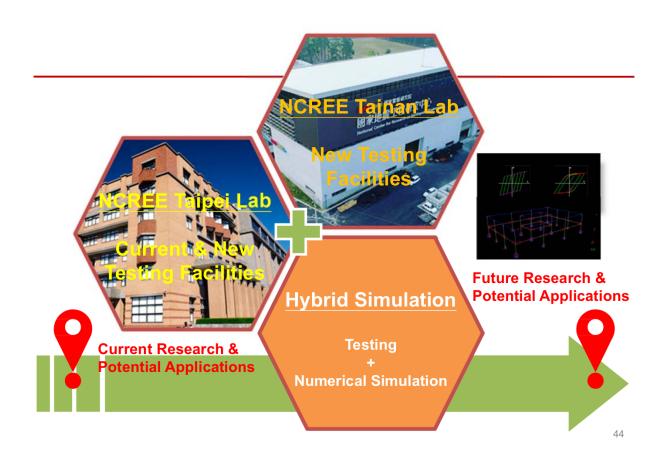

Test Purpose

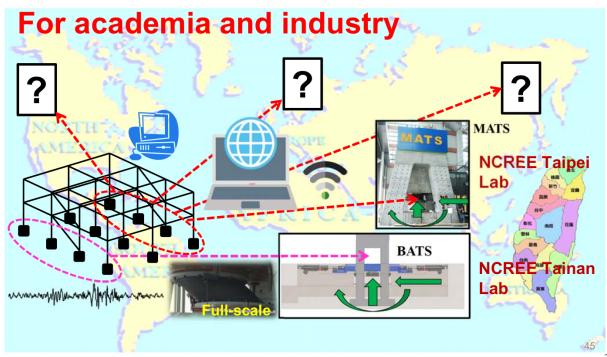
• Site: Taipei Basin II ($S_{DS} = 0.6$, $S_{MS} = 0.8$, $T_0 = 1.3 sec$)

· Architecture: B4F~12F

Structural System: RC + Seismic Isolation


Isolation System: HDRB + FVD


Demonstration Test (II)


Demonstration Test (III)

ხ6

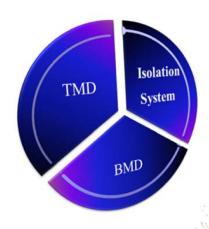
International Collaborative Test Platform

From Seismic Isolation to Building Mass Damper

Experiences

- President of CTSEE
- President of CSSE
- President of TCIAE
- Chairman of Civil Engineering Department of NTU
- Distinguished Professor at NTU

Dr. Kuo-Chun Chang


Professor at NTU and Consultant at NCREE

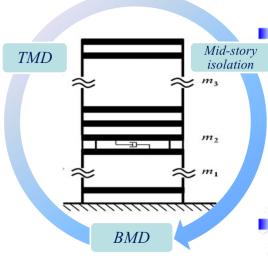
Prof. Kuo-Chun Chang is currently Distinguished Professor of the Department of Civil Engineering of National Taiwan University (NTU). Before joining the faculty of National Taiwan University in 1991, he worked as Research Assistant Professor and Associate Professor at the State University of New York at Buffalo and National Center for Earthquake Engineering Research at Buffalo for 6 years.

Dr. Chang served as the past Director of National Center for Research on Earthquake Engineering (NCREE) for 7 years, past department chair of civil engineering department of National Taiwan University for 6 years and the past presidents of the Chinese Structural Association and Chinese Taiwan Society of Earthquake Engineering.

Prof. Chang's research experiences relate to earthquake engineering and multiple hazards for buildings and bridges include seismic behavior and retrofit of conventional reinforced concrete structures, development of new seismic isolation and energy dissipation systems as well as structural health monitoring systems, and seismic behavior of precast segmental concrete bridge columns. In addition, he has been involved in the development of design codes and guidelines related to seismic design of buildings and bridges in Taiwan.

From Seismic Isolation to Building Mass Damper

Kuo-Chun Chang


Distinguished Professor, National Taiwan University

Shiang-Jung Wang Bo-Han Lee Ting-Yi Chien Ying-Hsuan Chen Wei-Chu Chuang Shih-Pu Kuo

Outline

From Seismic Isolation to Building Mass Damper – An Experimental and Numerical Study

- Introduction and motivation
 - Analytical model and study
 - Experimental study
 - Numerical study
- Concluding remarks

Why to adopt mid-story isolation design

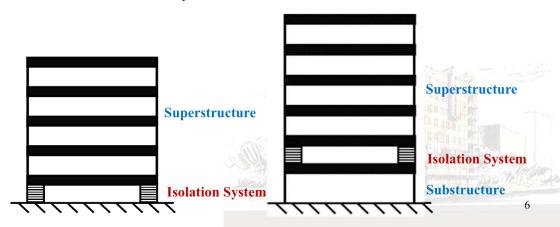
- Satisfy architectural concerns of aesthetics and functionality
- Enhance construction feasibility at highly populated areas
- Facilitate foundation construction in site
- Utilize limited available space efficiently
- Drain, ventilation and regular maintenances at mid-story isolation layer become easier and more convenient

3

Applications of mid-story isolation design in Taiwan (1/2)

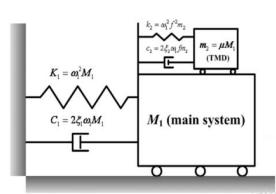
Applications of mid-story isolation design in Taiwan (2/2)

Story: B3F~15F
Height: 49.95m
Isolation layer: 2F
Isolator: LRB
Aspect ratio: 1.49
Unisolated period: 1.07sec
Isolated period: 3.72sec



31

Story: B6F~16F
Height: 57.80m
Isolation layer: 4F
Isolator: LRB
Aspect ratio: 2.36
Isolated period: 3.72sec

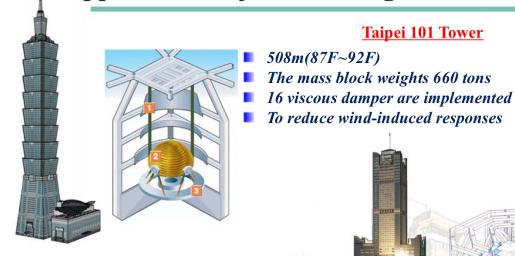

Mid-story isolation design

- Major concerns for mid-story isolation design
 - Flexibility of substructure
 - Contribution of higher modes
- Interaction between substructure and superstructure
- Difference of dynamic characteristics and responses between baseisolated and mid-story isolated structures

Tuned mass damper (TMD) design

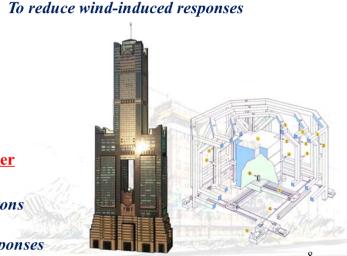
- Consist of mass, spring, and dashpot
- To mitigate wind-induced responses of main structure (serviceability)
- Mass ratio < 10% or even much lower, in general

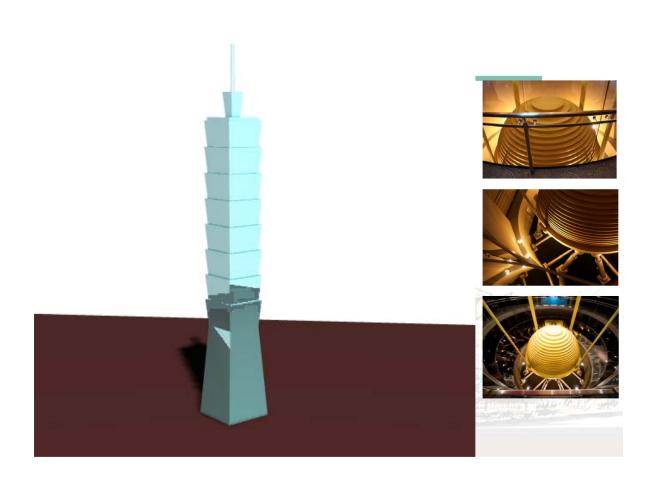
Simplified 2-Lumped-Mass Structural Model

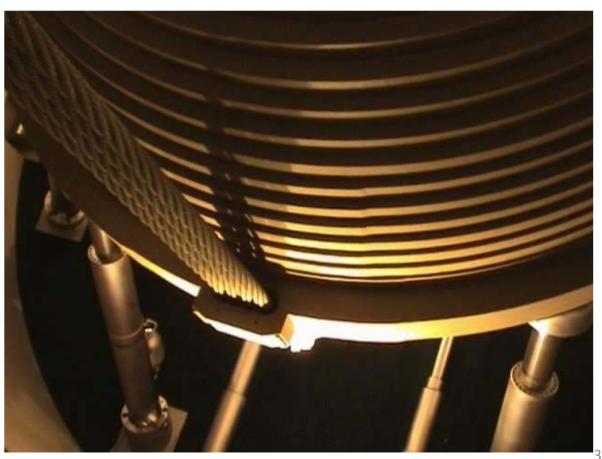

Mass ratio:
$$\mu = \frac{m_2}{M_1}$$

Frequency ratio: $f = \frac{\omega_2}{\omega_1}$

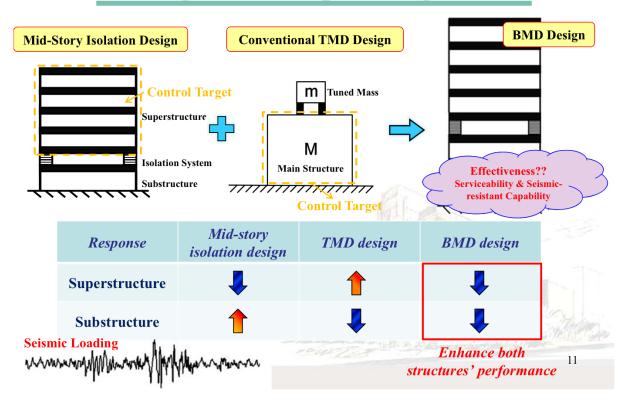
TMD damping ratio: $\xi_2 = \frac{c_2}{2m_2\omega_2}$

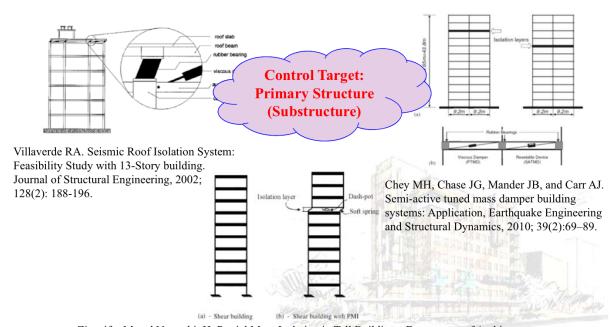

Taipei 101 Tower


Applications of TMD design in Taiwan



KaohSiung T&C Tower


- $\sim 378m(77F\sim78F)$
- The mass block weights 80 tons
- Active mass damper, AMD
- To reduce wind-induced responses



Motivation of study on building mass damper design (BMD)

Researches regarding BMD design

34

Limited practical applications of BMD design

Swatch Group Japan Headquarters in Tokyo

Artigor Group Limited

SMO Systems located at floors 9, 10, 12, 13

3 storey loger moment flames paled at every 2, 4 meters

Rigid moment flames paled at every 2, 4 meters

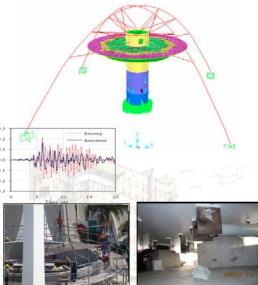
Multiple floor openings to accomplate after-moment elevators

URIZE existing basement valls for temporary shoring

Rut toundation

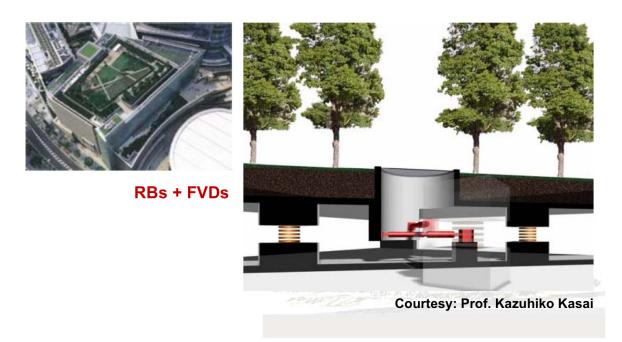
9F, 10F, 12F, and 13F

High-Damping Rubber Bearing + Sliding Bearing

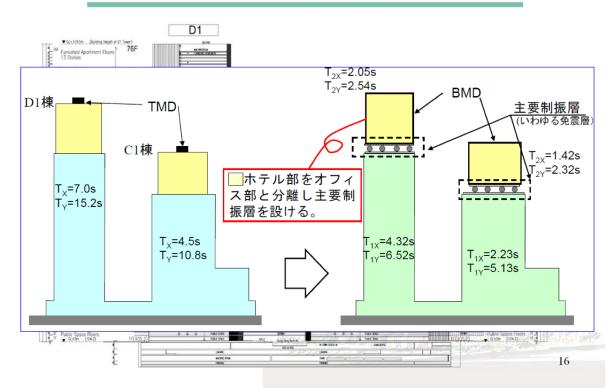

Kidokoro R. Self mass damper (SMD): seismic control system inspired by the pendulum movement of an antique clock. *Proceedings of the 14th World Conference on Earthquake Engineering*, Beijing, 2008.

Limited practical applications of BMD design

Theme Building at Los Angeles International Airport

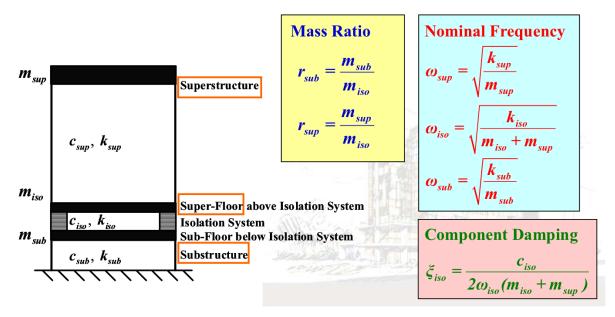


Rubber Bearing + Viscous Damper

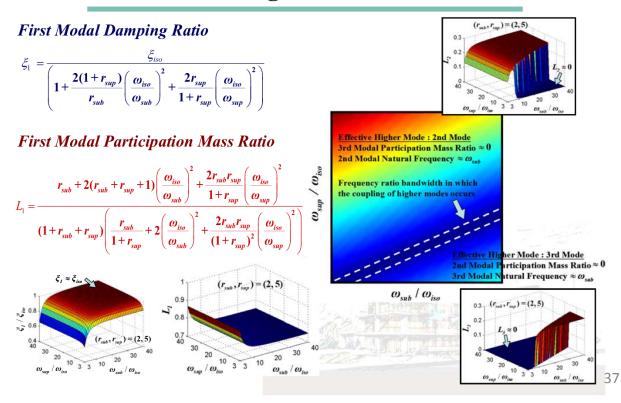


Limited practical applications of BMD design

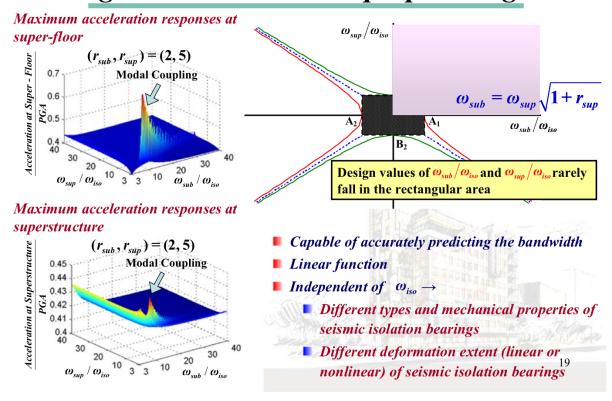
Green Mass Damper

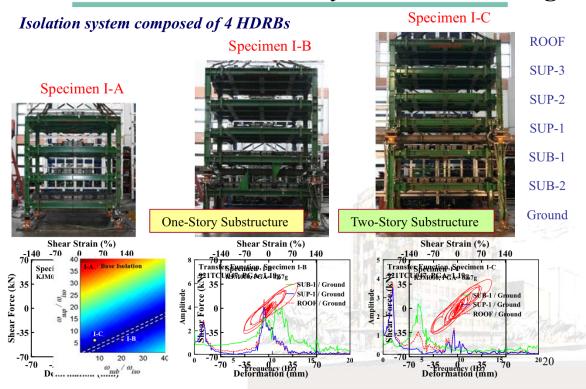


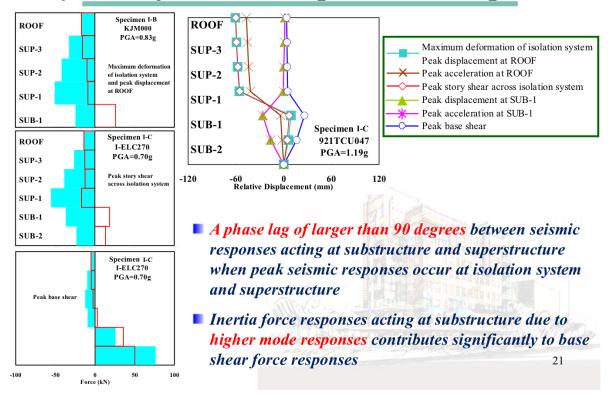
Preliminary design for Taipei station C1/D1

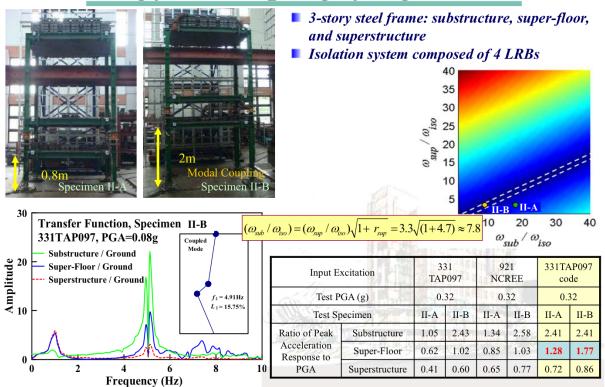


Simplified 3-lumped-mass structural model


- Equivalent Linear Analysis
 - All structural elements except isolation system remain elastic
 - Isolation System → Equivalent Linear Model


Fundamental and higher modal characteristics


Adverse effect arising from coupling of higher modes due to improper design


Test 1: to discuss discrepancies between base-isolated and mid-story isolated buildings

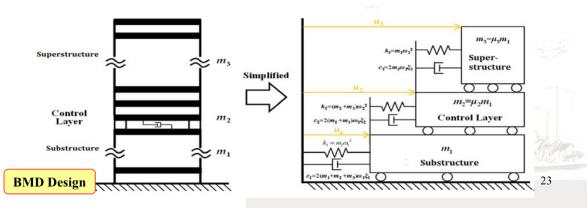
Vertical distributions of inertia force, story shear force and displacement responses

Test 2: to demonstrate adverse effect arising from coupling of higher modes

Simplified 3-lumped-mass structural model

Mass ratio

$$\mu_2 = \frac{m_2}{m_1}, \quad \mu_3 = \frac{m_3}{m_1}$$


Component damping

$$\xi_{1} = \frac{c_{1}}{2(m_{1} + m_{2} + m_{3})\omega_{1}} \quad \xi_{2} = \frac{c_{2}}{2(m_{2} + m_{3})\omega_{2}} \quad \xi_{3} = \frac{c_{3}}{2m_{3}\omega_{3}}$$

$$f_2 = \frac{\omega_2}{\omega_1}, f_3 = \frac{\omega_3}{\omega_1} \qquad \omega_1 = \sqrt{\frac{\mathbf{k}_1}{\mathbf{m}_1}} \quad \omega_2 = \sqrt{\frac{\mathbf{k}_2}{\mathbf{m}_2 + \mathbf{m}_3}} \quad \omega_3 = \sqrt{\frac{\mathbf{k}_3}{\mathbf{m}_3}}$$

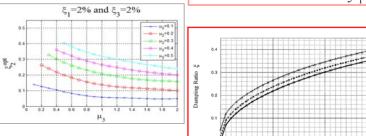
Modal characteristic Dynamic response control

Modal characteristic control (1/2)

- Refer to Sadek's method (1997)
- **BMD** system parameters: μ_2 , μ_3 , f_2 , f_3 , ξ_1 , ξ_2 , ξ_3

Complex eigenvalues of equation of motion $\lambda'_{2n-1,2n} = \omega'_n \xi'_n \pm i \omega'_n \sqrt{1 - {\xi'_n}^2}, n = 1, 2, 3$

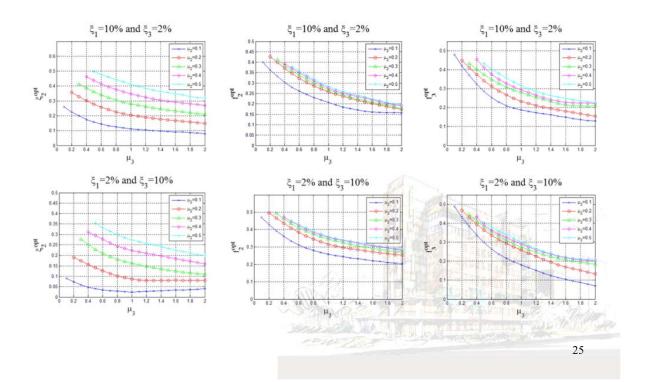
Modal characteristic Dynamic response



Modal Characteristic $\xi'_1 \cong \xi'_3 \cong \xi'_5$ **OBMD**

 $\omega'_1 \cong \omega'_3 \cong \omega'_5$

 $\xi_1 = 2\%$ and $\xi_3 = 2\%$


Parametric analysis

Optimum design parameters ξ_2^{opt} , f_2^{opt} , and f_3^{opt} in general are proportional to μ_3 and are non-proportional to μ_2

Sadek F, Mohraz B, Taylor AW and Chung RM. A Method of Estimating The Parameters of Tuned Mass Dampers for Seismic Applications. Earthquake Engineering and Structural Dynamics, 1997; 26: 617-635.

Modal characteristic control (2/2)

Dynamic response control

- Refer to Tsai's method (1993)
- Fixed acceleration amplitude support excitation

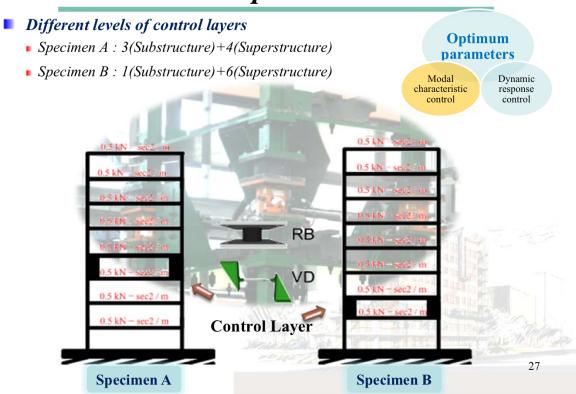
$$\mathbf{M}\ddot{\mathbf{u}} + \mathbf{C}\dot{\mathbf{u}} + \mathbf{K}\mathbf{u} = \mathbf{M}\mathbf{R}\ddot{u}_g \quad \ddot{u}_g = Ge^{i\omega t}$$

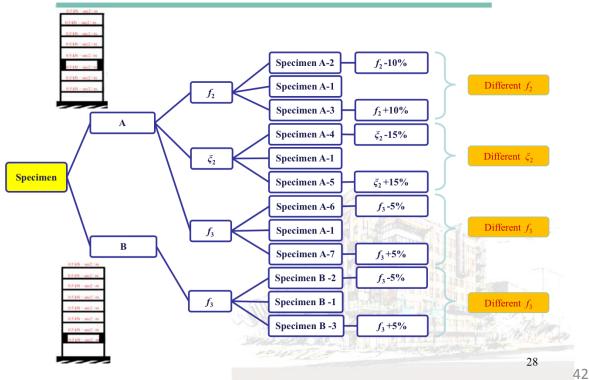
Parametric analysis

Modal characteristic control Dynamic response control

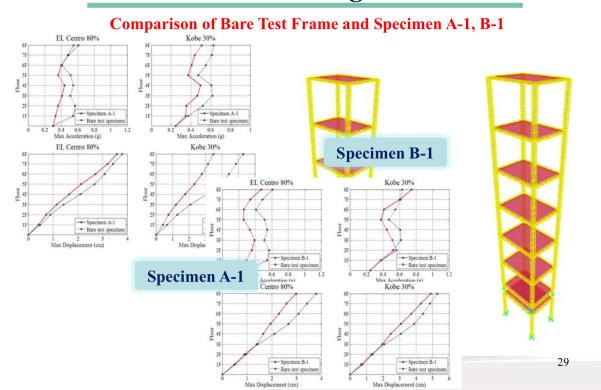
■ Vibration amplitude of each DOF to input amplitude

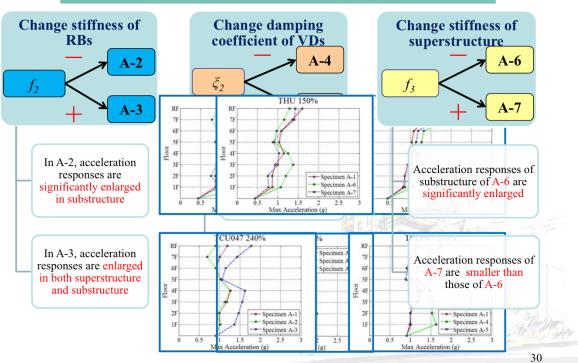
$$\frac{\omega_1^2|u_1|}{G}, \frac{\omega_1^2|u_2|}{G}, \frac{\omega_1^2|u_3|}{G}$$

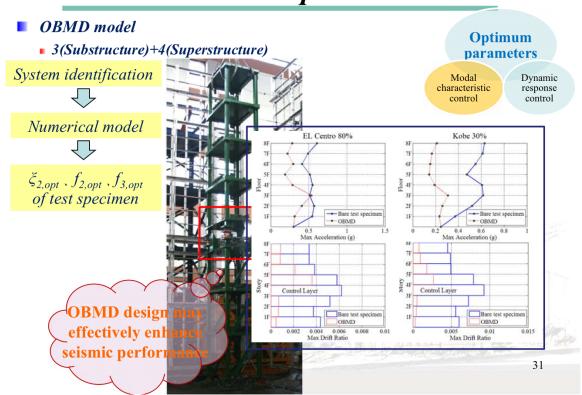

Objective function = Min.
$$\left(\frac{\omega_1^2 |u_1|}{G} + \frac{\omega_1^2 |u_2|}{G} + \frac{\omega_1^2 |u_3|}{G}\right)$$


Obtain f_2^{opt} , ξ_2^{opt} , f_3^{opt}

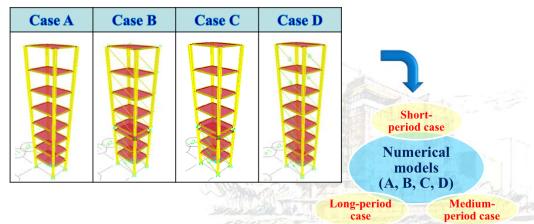
ORMI


Test specimens

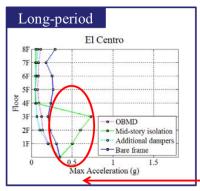

Design parameters

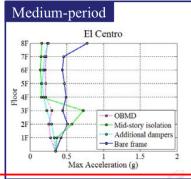

Response of specimens with and without BMD design

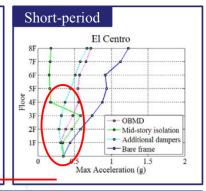
Sensitivity analyses on varied design parameters for BMD design



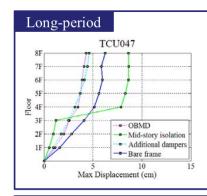
Effectiveness of OBMD design in reducing seismic responses

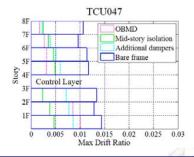


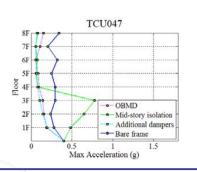

Numerical models


Model	Model Type		Optimum parameters		Design assumption		Optimum
		f_2	f_3	ξ ₂	ξ ₁	ξ 3	parameters
Case A	Bare frame	-	-	-	-	-	Modal Dynamic
Case B	OBMD design	0.95	1.40	0.19	0.08	0.02	characteristic response
Case C	Mid-story isolation design	-	-	0.19	0.08	0.02	control control
Case D	Energy dissipation design with VDs	-	-	-	0.08		

Numerical comparison between models with different vibration periods






- When increasing the vibration period of the bare frame model and adopting mid-story isolation design, the substructure's acceleration might be greatly enlarged
- OBMD design may reduce acceleration of both superstructure and substructure effectively, especially for a bare frame model with longer vibration period

33

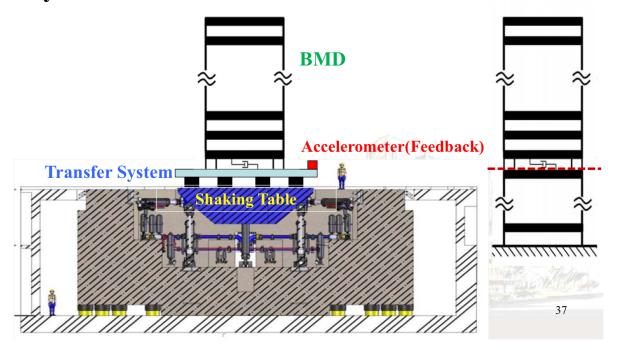
Responses of long-period model

- In long-period case, mid-story isolation design may reduce drift ratio effectively, but substructure's acceleration response might be enlarged
- Compared with mid-story isolation design, OBMD design may reduce seismic responses more effectively in long-period case
- OBMD design almost has the same response reduction as energy dissipation design

45

Concluding remarks

- In mid-story isolation design, higher mode responses contribute significantly to force responses at substructure
- Coupling of higher modes results in enlarged acceleration responses at super-floor and superstructure
- A new structural design concept, optimum building mass damper (OBMD), is studied to combine advantages of tuned mass damper (TMD) and mid-story isolation
- Compared with traditional TMD system, OBMD design can utilize space more effectively and economically
- Preliminary numerical and experimental comparison results disclose that the proposed OBMD design method is practicable and effective to seismically protect both substructure and superstructure, especially for longperiod (high-rise) buildings


Future work (1/2)

- A series of shaking table tests will be performed to further verify the effectiveness of the proposed OBMD design method based on the dynamic response control concept
- Semi-active or active control devices will be applied to OBMD design to further enhance its control performance
- The effectiveness of OBMD design under near fault ground motions will be further studied

36

Future work (2/2)

Hybrid Simulation

Thank you for your attention

