

- Ch. 1 -

Introduction

Steel Moment Resisting Frames

Research Objectives & Contents

Comprehensively evaluate the actual seismic performance (behavior, damage accumulation, collapse fragility) of SMRFs under multiple earthquakes

Ch. 1 Introduction

Ch. 2 Response Analysis of Nondeteriorated Models

Purpose: To evaluate the seismic performance of SMRFs under multiple earthquakes focusing on the ductile fracture failure of beam-to-column connection

Ch. 3 Response Analysis of Deteriorated Models

Purpose: To evaluate the seismic performance of SMRFs under multiple earthquakes considering the strength deterioration caused by local buckling of columns

Ch. 4 Full-Scale Steel Frame Test

Purpose: To further verify the seismic performance of SMRFs under multiple earthquakes through the experimental test

Ch. 5 Conclusions

Ch. 2 Response Analysis of Nondeteriorated Models

Purpose: To evaluate the seismic performance of SMRFs under multiple earthquakes focusing on the ductile fracture failure of beam-to-column connection

Ch. 3 Response Analysis of Deteriorated Models

Purpose: To evaluate the seismic performance of SMRFs under multiple earthquakes considering the strength deterioration caused by local buckling of columns

Ch. 4 Full-Scale Steel Frame Test

Purpose: To further verify the seismic performance of SMRFs under multiple earthquakes through the experimental test

Ch. 5 Conclusions

- Ch. 2 -

Analytical Model

2% Rayleigh Damping for 1st and 2nd mode

Hysteresis Model

Input Ground Motion Records

- 1. 1940 El Centro NS6. 1994 OliveView NS
- 2. 1952 Taft EW 7. 1995 JMA Kobe NS
- 3. 1968 Hachinohe EW8.
- 4. 1989 Gilroy Array #3 90° 9. 2011 JMA Sendai NS
- 5. 1994 Newhall NS 10. 2016 Kik-net Mashiki EW

Scaled to three different intensities based on Peak Ground Velocity (PGV): PGV 0.5 m/s (design level) PGV 0.75 m/s

PGV 1.0 m/s

Simulation of Multiple Excitations:

Combination of 5 times excitation of <u>Same Wave</u> and <u>Same Level</u> with <u>30 sec. zero acceleration</u> gap

1999 Chi Chi TCU 129 EW

Cumulative Damage of Beam

*Kishiki, S., Lee, D., Yamada, S., Ishida, T., and Jiao, Y., 2019. Low-Cycle Fatigue Performance Assessment of Current Japanese Steel Beam-to-Column Connections Determined by Ductile Fracture, *Engineering Structures* 182, 241–250

Loading History

Number of Sets to Fracture

10th set: crack initiated

23rd set: crack almost

penetrated through

	1
00 10/	
99.1 %	I.
	2

19th set: fully fractured

28th set: fully fractured

87.6%

The reliability of the cumulative damage evaluation method under random loading is acceptable

- Ch. 2 -

Analytical Result: PGV 0.75 & 1.0 m/s Ductile Fracture

6-story Strong Col. Base Model Excited by PGV 1.0 m/s Hachinohe EW Record

- 14 -

ΛΛ

ΛΛ

θ

θ

Collapse Fragility

6 different models x 10 different ground motion seq. = 60 cases

Ch. 1 Introduction

Ch. 2 Response Analysis of Nondeteriorated Models

Purpose: To evaluate the seismic performance of SMRFs under multiple earthquakes focusing on the ductile fracture failure of beam-to-column connection

Ch. 3 Response Analysis of Deteriorated Models

Purpose: To evaluate the seismic performance of SMRFs under multiple earthquakes considering the strength deterioration caused by local buckling of columns

Ch. 4 Full-Scale Steel Frame Test

Purpose: To further verify the seismic performance of SMRFs under multiple earthquakes through the experimental test

Ch. 5 Conclusions

Parameter of Models

Hysteresis Model of Columns

Input Ground Motion Records

- 1. 1940 El Centro NS6. 1994 OliveView NS
- 2. 1952 Taft EW 7. 1995 JMA Kobe NS
- 3. 1968 Hachinohe EW8.
- 4. 1989 Gilroy Array #3 90° 9. 2011 JMA Sendai NS
- 5. 1994 Newhall NS 10. 2016 Kik-net Mashiki EW

Scaled to three different intensities based on Peak Ground Velocity (PGV): PGV 0.5 m/s (design level) PGV 0.75 m/s PGV 1.0 m/s

Simulation of Multiple Excitations:

Combination of 5 times excitation of <u>Same Wave</u> and <u>Same Level</u> with <u>30 sec. zero acceleration</u> gap

1999 Chi Chi TCU 129 EW

Stages to Collapse

 \rightarrow

Excitation 1

- $\textit{Excitation 2} \quad \rightarrow \quad \dots \quad \rightarrow \quad$
- → Excitation N

Stage 1: No deterioration

- Sway mechanism
- Stable behavior

Stage 2: one end hinge of column deteriorated

- Damage concentration
- Moment redistribution

Stage 3: both end hinges of column deteriorated

Shifting to weak story mechanism

Damage Index

Nondeterioration Margin

Damage Index

Trend of Nondeterioration Margin

Trend of Deterioration Index

3-story; $D_c/t = 29.45$; 6-story; $D_c/t = 29.45$; 3-story; $D_c/t = 20$; ${}_cM_p/{}_bM_p = 1.5$; PGV 0.5 m/s ${}_cM_p/{}_bM_p = 1.5$; PGV 0.75 m/s ${}_cM_p/{}_bM_p = 1.5$; PGV 0.75 m/s

- Ch. 3 -

Intensity (PGV)	0.5 m/s				0.75 m/s				1.0 m/s			
Number of Excitations	2	3	4	5	2	3	4	5	2	3	4	5
$D_c/t = 29.45$	1.1	1.5	1.5	1.75	1.75	2	_	_	—	_	_	_
$D_c/t = 25$	1.1	1.1	1.1	1.25	1.5	1.5	1.75	2	1.75	_	_	_
$D_{c}/t = 20$	1.1	1.1	1.1	1.1	1.1	1.1	1.25	1.5	1.25	1.5	2	—

- 25 -

Ch. 1 Introduction

Ch. 2 Response Analysis of Nondeteriorated Models

Purpose: To evaluate the seismic performance of SMRFs under multiple earthquakes focusing on the ductile fracture failure of beam-to-column connection

Ch. 3 Response Analysis of Deteriorated Models

Purpose: To evaluate the seismic performance of SMRFs under multiple earthquakes considering the strength deterioration caused by local buckling of columns

Ch. 4 Full-Scale Steel Frame Test

Purpose: To further verify the seismic performance of SMRFs under multiple earthquakes through the experimental test

Ch. 5 Conclusions

- Ch. 4 -

Outline of Test

Specimens

Experimental Progress

- Ch. 4 -

Strength and Stiffness Transition of Steel Frames

Examination by Numerical Analysis

Comparison of Margin to Fracture and Observed Damages

NONDETERIORATED MODELS (Margin to fracture = 100% – cumulative damage)

Comparison of Deterioration Index and Observed Damages

DETERIORATED MODELS (*NM*: Nondeterioration margin; *DI*: Deterioration Index)

Conclusions

Ch. 2 Response Analysis of Nondeteriorated Models

- \rightarrow The evaluation is focused on the cumulative damage at the beam end
- \rightarrow Overall, the structure has a stable behavior and satisfying performance

Ch. 3 Response Analysis of Deteriorated Models

- → Story collapse more likely to occur due to column strength deterioration
- → Column strength deterioration could be prevented by providing enough nondeterioration margin at the 1st Exc.
- → The performance could be improved by increasing the column-to-beam moment ratio or decreasing the column width-to-thickness ratio

Ch. 4 Full-Scale Steel Frame Test

- → The observed damages generated within the structure and the corresponding calculated damages are analyzed under various maximum story drift angle levels
- → Severe damages generated within the structure could be prevented by limiting maximum story drift angle range under multiple earthquakes to a certain degree

Research Papers

- **Ch. 2**: <u>Randy Tenderan</u>, Takanori Ishida, Yu Jiao, Satoshi Yamada. Seismic Performance of Ductile Steel Moment-Resisting Frames Subjected to Multiple Strong Ground Motions, Earthquake Spectra, Vol. 35, 1, pp. 289-310, Feb. 2019.
- **Ch. 3**: <u>Randy Tenderan</u>, Takanori Ishida, Satoshi Yamada. Effect of Column Strength Deterioration on the Performance of Steel Moment-Resisting Frames Subjected to Multiple Strong Ground Motions, Engineering Structure. (under review)
- **Ch. 4**: Takanori Ishida, <u>Randy Tenderan</u>, Keita Kohtaki, Shoichi Kishiki, Jun Iyama, Takashi Hasegawa, Tsuyoshi Seike, Satoshi Yamada. Experimental Study on Full-Scale Steel Moment-Resisting Frames Considering Multiple Earthquakes, Engineering Structure 2021.